

6th International Electronic Conference on Medicinal Chemistry

1-30 November 2020 sciforum.net/conference/ECMC2020

sponsored by
pharmaceuticals

Identification of novel compounds from *Neocarya macrophylla* against toxins from *Naja nigricollis* using computational approach

Amina Jega Yusuf¹*, Musa Ismail Abdullahi², and Aliyu Muhammad Musa²

¹ Department of Pharmaceutical & Medicinal Chemistry, Usmanu Danfodiyo University, Sokoto, Nigeria

² Department of Pharmaceutical & Medicinal Chemistry, Ahmadu Bello University,

Zaria, Nigeria

* Corresponding author: amina.yusuf@udusok.edu.ng

Graphical abstract: Identification of novel compounds from *Neocarya macrophylla* against toxins from *Naja nigricollis* using computational approach

Table 1: Docking scores of the compounds against three toxins from Naja nigricollis

		Docking scores (kcal/mol)		
Compound name	Compound ID	Phospholipase A ₂	Neurotoxin	Cardiotoxin
Catechin	9064	-8.5	-5.0	-5.4
Catechin-3-	21626704	-7.3	-5.8	-6.0
rhamnoside				
Epicatechin	72276	-8.2	-5.0	-5.2
Quercetin	528043	-8.5	-5.6	-5.2

pharmaceu

sponsored: MDPI

Abstract: Envenomation resulting from snakebite especially *N. nigricollis* constitutes a frequent medical emergency in many tropical and sub-tropical countries. The unavailability and side effects associated with the only definitive treatment for snakebite victims necessitated the search for alternative available agents with lesser side effects. The aim of this study was to investigate the inhibitory action of compounds isolated from *N. macrophylla* against toxins (phospholipase A₂, neurotoxin and cardiotoxin) from *N. nigricollis* venom using computational approach.

Phytochemical constituents of *N. macrophylla* (catechin, epicatechin, catechin-3-rhamnoside and quercetin) were screened against three toxins from *N. nigricollis* using AutoDock tools in PyRx software and post docking analysis was conducted using the Chimera 1.14 and BIOVIA Discovery studio visualizer 2020.

The results have shown that, the compounds from *N. macrophylla* can bind with high affinity (ranging from -7.3 to -8.5 kcal/mol) to the active sites of phospholipase A_2 compared to the other toxins. The docking scores of the compounds against neurotoxin and cardiotoxin ranges from (-5.2 to -6. 6) and (-5.2 to -6.0), respectively.

The outcome of this study revealed that, phytoconstituents from *N. macrophylla* can effectively inhibit toxins from *N. nigricollis* venom and thus, could serve as lead compounds for further analysis.

pharmace

sponsored: MDPI

Keywords: Neocarya macrophylla, flavonoids, in silico, antivenom

Introduction

- Envenomation resulting from snakebite is a neglected public health issue in many tropical and subtropical countries especially in Africa, Asia and Latin America
- with about with about 5.4 million snake bites occur each year, resulting in 1.8 to 2.7 million cases of envenomings (poisoning from snake bites) and in addition, there are 81 410 and 137 880 deaths and around three times as many amputations and other permanent disabilities each year (WHO, 2019).
- The unavailability and side effects associated with the only definitive treatment (administration of ASVs) for snakebite victims necessitated the search for alternative available agents with lesser side effects.
- Snake venom is a complex mixture of enzymatic and toxic proteins, which include phospholipase A₂ (PLA₂), myotoxins, hemorrhagic metallo-proteineases and other proteolytic enzymes, coagulant components, cardiotoxins, cytotoxins and neurotoxins (Kini, 1997; Aird, 2000; Ameen *et al.*, 2015).
- Pathology induced by envenomation is due to the collective effect of myotoxic phospholipases A₂, neurotoxins, hyaluronidases and cytotoxins among others.

pharmacer

Introduction con't

- *Neocarya macrophylla* (Family; Chrysobalanaceae) commonly known as gingerbread plum has been used in traditional medicine to treat snake bites, cancer, breathing disorders among other (Yusuf *et al.*, 2015).
- The antisnake venom of the plant have been validated against *Naja nigricollis* venom in animal models (Yusuf *et al.*, 2019; Yusuf *et al.*, 2020).
- Catechin, catechin-3-rhamnoside, epicatechin and quercetin were previously isolated from the stem bark and leaves of *N. macrophylla* (Figure 1) (Yusuf *et al.*, 2019; Yusuf *et al.*, 2020).
- The aim of the study was to investigate the inhibitory action of compounds isolated from *N. macrophylla* against toxins (phospholipase A₂, neurotoxin and cardiotoxin) from *Naja nigricollis* venom using computational approach

pharmaceu

Naja nigricollis

Figure 1: 2D structures of compounds isolated from Neocarya macrophylla

pharmaceu

sponsored: MDPI

- Ligand preparation
- Protein preparation

Molecular Docking analysis

- AutoDock tools in PyRx software
 <u>Post docking analysis</u>
- Chimera 1.14
- BIOVIA Discovery studio visualizer 2020

6th International Electronic Conference on Medicinal Chemistry 1-30 November 2020

Results and discussion

Table 1: Docking scores of the compounds against three toxinsfrom Naja nigricollis

Docking scores (kcal/mol)

sponsored: MDPI

🕅 pharmaceu

Compound name	Compound ID	Phospholipase A ₂	Neurotoxin	Cardiotoxin	
Catechin	9064	-8.5	-5.0	-5.4	
Catechin-3-	21626704	-7.3	-5.8	-6.0	
mannoside					
Epicatechin	72276	-8.2	-5.0	-5.2	
	12210	0.2	0.0	0.2	
Quercetin	528043	-8.5	-5.6	-5.2	

Figure 2: A) Docking pose of the compounds at the active site of *N. nigricollis* PLA₂. 2D animated poses between the compounds and *N. nigricollis* PLA₂ **B)** catechin, **C)** epicatechin, **D)** catechin-3-rhamnoside, **E)** Quercetin

6th International Electronic Conference on Medicinal Chemistry 1-30 November 2020

E) Quercetin

Figure 3: A) Docking pose of the compounds at the active site of *N. nigricollis* cardiotoxin. 2D animated poses between the compounds and *N. nigricollis* cardiotoxin **B)** catechin, **C)** epicatechin, **D)** catechin-3-rhamnoside, **E)** Quercetin

sponsored:

MDPI

pharmaceu

6th International Electronic Conference on **Medicinal Chemistry** 1-30 November 2020

Α

E) Quercetin

Figure 4: A) Docking pose of the compounds at the active site of *N. nigricollis* neurotoxin. 2D animated poses between the compounds and *N. nigricollis* neurotoxin B) catechin, C) epicatechin, D) catechin-3-rhamnoside, E) Quercetin

6th International Electronic Conference on Medicinal Chemistry 1-30 November 2020

sponsored: MDPI

pharmaceu

E) Quercetin

	Interactions				
Compound name	Phospholipase A ₂	Neurotoxin	Cardiotoxin		
Catechin	H-Bond: PHE21, ASP48	H-Bond: ASN5, ARG32	H-Bond: LYS2		
	Others : TYR3, PHE5, LYS6, ILE9, LEU9, TRP18, ALA22, CYS28, GLY29, ARG30, CYS44, HIS47, TYR51, PHE99	Others : GLN7, TYR24, TRP28, ILE 35, GLU37, ARG38, GLY39	Others: CYS3, ASN4, ILE7, PRO8, PRO9, PHE10, TRP11, ASP57, LYS58		
Catechin-3-	H-Bond: GLY29	H-Bond: LYS15, GLU37	H-Bond: PRO8, LYS23, ASN60		
rhamnoside	Others : LEU2, TYR3, PHE5, LYS6, ILE9, TRP18, TRP19, PHE21, ALA22, ASP23, CYS28, ARG30, TYR62, PHE99	Others : ASN5, GLN6, GLN7, TYR24, LYS26, TRP28, ILE36, RG38, GLY39, CYS40	Others : ASN4, LEU6, ILE7, PRO9, PHE10, TRP11, ARG36, LYS58		
Epicatechin	H-Bond: HIS47, ASP48	H-Bond: ARG32	H-Bond: ASN4		
	Others : LEU2, TYR3, PHE5, LYS6, TRP18, PHE21, ALA22, CYS28, GLY29, CYS44, TYR51, TYR62, PHE99	Others : ASN5, GLN7, LYS15, TYR24, TRP28, ILE35, GLU37, ARG38, GLY39, CYS40	Others : LEU6, ILE7, PRO8, PRO9, PHE10, TRP11, ARG36, LYS58, ASN60		
Quercetin	H-Bond: LEU2	H-Bond: ASN5, GLN7,	H-Bond: LYS58		
	Others: TYR3, PHE5, LYS6, ILE9, TRP18, TRP19, PHE21, ALA22, CYS28, GLY29, ARG30, GLY31, CYS44, HIS47, ASP48, TYR62, PHE99	Others: GLN6, TYR24, TRP28, ARG32, ILE35, GLU37	Others : ASN4, ILE7, PRO8, PRO9, PHE10, TRP11		

Table 2: Interactions of the compounds against the three toxins from Naja nigricollis

Conclusion

We have screened four compounds (catechin, catechin-3rhamnoside, epicatechin and quercetin) isolated from *N. macrophylla* using molecular docking.

The outcome of this study revealed that, phyto-constituents from *N. macrophylla* can effectively inhibit toxins from *N. nigricollis* venom and thus, could serve as lead compounds for further analysis

pharmacer

Some References

- World Health Organization, WHO. 2019. Snake envenomings. WHO Fact sheets; [cited 2019 Aug 23]. Available from: <u>https://www.who.int/news-room/fact-sheets/detail/snakebiteenvenoming</u>.
- Kini, R. M. (1997). Venom Phospholipase A2 Enzymes. Structure, Function and Mechanism, Chichester: John Wiley & Sons Ltd., Chichester, United Kingdom, 155–183.
- Aird, S. D. (2002). Ophidian envenomation strategies and the role of purines, *Toxicon* 40 (59): 35-393.
- Mackessy, S. P. (2002). "Biochemistry and pharmacology of colubrid snake venoms" Toxin Reviews. *Journal of Toxicology*: 21 (1-2): 43–83.
- Robert, A. H., Adam, H., Simon, C. W., Brian, F., David Soares, A M., Fontes, M. R. M and Giglio, J. R (2004). Phospholipases A2 myotoxins from Bothrops snake review. *Current Organic Chemistry*, 8: 1677–1690.
- Ameen, S. A., Salihu, T., Mbaoji, C. O., Anoruo-Dibia, C. A and Adedokun, R. A. M. (2015). Medicinal plants used to treat Snake bite by Fulani Herdsmen in Taraba State, Nigeria. *International Journal of Applied Agricultural and Apicultural Research* 11 (1&2): 10-21.
- Kini, R., Chan, Y., 1999. Accelerated evolution and molecular surface of venom phospholipase A2 enzymes. J. Mol. Evol. 48, 125–132..
- Warrell, D. A. (2003). Injuries, envenoming, poisoning, and allergic reactions caused by animal. In: Warrell DA, Cox TN, Firth JD, Benj J Jr, editors. Oxford Textbook of Medicine. Oxford: Oxford University Press; 2003. pp. 923–45

pharmaceu

Acknowledgments

We acknowledged the efforts of Mr. Adeboyega Abayomi of the Department of Biochemistry University of Jos, Nigeria and Jaris Computational Biology Center for providing the necessary softwares for the research work

