Se-containing 5-HT₆R ligands in search for efficient therapy of Alzheimer's disease

Sylwia Sudoł^{1*}, Katarzyna Kucwaj-Brysz¹, Wesam Ali^{1,2}, Grzegorz Satała³, Claus Jacob², Jadwiga Handzlik¹

¹ Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, PL 30-688 Kraków, Poland ² Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, Campus B 2.1, D-66123 Saarbruecken, Germany ³ Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, PL 31-343 Kraków, Poland

* e-mail: s.sudol@doctoral.uj.edu.pl

INTRODUCTION

Serotonin 5-HT₆ receptor has been an attractive protein target for over 20 years in the search for new therapeutic agents for the treatment of the central nervous system disorders, including depression, Alzheimer's disease (AD), schizophrenia or obesity [1]. Nonetheless, none from already designed 5-HT₆R agents have reached pharmaceutical market yet. This is enhanced by the fact that there is no effective treatment for AD, and therefore new drugs development becomes an urgent need. Searching for structurally novel, highly active 5-HT₆R ligands with desired pharmacokinetic profile is demanding in this field. Additionally, very recent studies have emphasized the neuroprotective properties of selenium-containing derivatives, which may turn out to be very useful for treatment of neurodegenerative disorders such as AD [2].

IN VITRO SCREENING

All synthesized compounds were subjected to in vitro receptor screening with radioligands. Three compounds containing selenium as heteroatom were characterized by high affinity towards serotonin 5-HT₆ receptor $(K_i < 100 \text{ nM})$ and high selectivity for competitive 5-HT_{2A} and 5-HT₇ receptors.

BACKGROUND

Previously we obtained the group of highly active 5-HT₆R ligands among triazine derivatives with a procognitive effect *in vivo*, which contained oxygen or sulphur as heteroatom in linker [3]. The aim of this study was to investigate how the presence of selenium will affect the *in vitro* activity. Hence, the subject of the presented research is a series of novel triazine-based selenium-containing derivatives varying in different length (n,n') and branching (R¹) of the linker (Fig. 1).

Figure 1. General structure for investigated compounds.

Table 1. Results of radioreceptor studies on the affinity
 to serotonin receptors.

Cpd.	R ¹	n	n'	X	<i>K</i> ; [nM]		
					5-HT ₆	5-HT _{2A}	5-HT ₇
1	H			S	26	197	2871
2				Se	242	406	2329
3	Me			S	176	337	1737
4		0		Se	111	376	4247
5	Et			S	127	427	2470
6				Se	122	1011	4393
						0.1.1	4 - 0 0

DISCUSSION

- A series of novel selenium-containing compounds with submicromolar affinity for 5-HT₆ receptors and differential selectivity was obtained, including three compounds (8, 14, 18) with K_i (5-HT₆) <100 nM.
- Half of the selenium derivatives (4, 6, 8, 14, 18, red, Table 1) showed higher affinity for the 5-HT₆ receptor comparing to correspondig sulfur analog.
- The topology of the compounds shows the most favorable influence of the branching of the linker (8), as well as the extension of the carbon chain (n, n') without branching the linker (R¹) (14, 18) on the affinity and selectivity to 5-HT₆R in the group of selenium triazine derivatives under consideration. • The key effect of the carbon chain length (n, n') on the affinity for the 5-HT₆ receptor was observed both in the case of: (i) the presence of a phenyl and benzyl ring and *(ii)* analogously when having the sulfur as heteroatom. • The topology of 4-(4-methylpiperazin-1-yl)-6-(1-(phenylselanyl)pentyl)-1,3,5-triazin-2-amine favors a higher affinity for the 5-HT₆ receptor (Compound 8, Table 1), and the topology of 4-(1-(benzylselanyl)propyl)-6-(4-methylpiperazin-1-yl)-1,3,5-triazin-2-amine (Compound 20, Table 1) drastically reduces 5-HT₆R affinity. • The novel Se-containing derivatives with the most promising activity (8, 14, 18) will be selected for further in silico and in vitro evaluation of ADMET and neuroprotective properties.

REFERENCES:

The project is financed by the National Science Center grant No. NCN 2018/31/B/NZ7/02160.

[1] Yun H.-M. i Rhim H. 2011, The Serotonin-6 Receptor as a Novel Therapeutic Target, Exp. Neurobiol., 4, 159. [2] Landgraf et al. 2020, Neuroprotective and anti-neuroinflammatory properties of ebselen derivatives and their potential to inhibit neurodegeneration, ACS Chem Neurosci., 11(19):3008-3016. [3] Sudoł et al. **2020**, Chlorine substituents and linker topology as factors of 5-HT₆R activity for novel highly active 1,3,5-triazine derivatives with procognitive properties in vivo, Eur. J Med. Chem., 203, 112529.

armaceuticals

6th International Electronic Conference on **Medicinal Chemistry**

1-30 November 2020

