

Mapping of novel binary copper oxides with density functional theory modelling

S. Sampath¹, K. Tokar^{1,2}, M. Derzsi^{1,3}

 ¹Advanced Technologies Research Institute, Faculty of Materials Science and Technology in Trnava, Slovak University of Technology in Bratislava, Jána Bottu 8857/25, 917 24 Trnava, Slovakia
²Institute of Physics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 11 Bratislava, Slovakia
³Center of New Technologies, University of Warsaw, Żwirki i Wigury 93, 02089 Warsaw, Poland sankari.sampath@stuba.sk

EURÓPSKA ÚNIA Európsky fond regionálneho rozvoja OP Integrovaná infraštruktúra 2014 – 2020

10-20 November

Introduction

- ➢ Binary copper oxides [Cu-O] have remarkable electronic and optical properties.
- Cu-O find numerous applications in photovoltaics and all-oxide electronics due to their abundance, low cost and non-toxic nature that makes Cu-O highly attractive for further exploration.
- Our Goal To predict new stable binary Cu-O phases using density functional theory (DFT) and Evolutionary Algorithm (EA) methods.

Sankari Sampath: Cu-O phases from ab-initio

Known binary Cu-O

Benxian L et.al, J. Solid State Chem., 184, 2097 (2011)
Chaudhary N et.al, Solid State Commun., 247, 36 (2016)
Morgan P E D et.al, J. Solid State Chem., 121, 33 (1996)

Computational procedure

Sankari Sampath: Cu-O phases from ab-initio

Calculation details

- > DFT method for structure optimization (VASP program).
- Details of the DFT calculations: PBEsol functional, planewave cut-off 520eV.
- \blacktriangleright Electron correlations handled with Liechtenstein approach: U_{Cu}=9eV, J_{Cu}=1eV.
- \succ EA for the search of crystal structures (XtalOpt program^[4]).
- Lattice dynamics calculations using program PHONOPY^[5].

[4] Patrick A et.al, Comput. Phys. Commun., 222, 418 (2018) [5] Togo A et.al, Scr. Mater., 108, 1 (2015)

Strategy for the selection of input models

Sankari Sampath: Cu-O phases from ab-initio

Cu₃O₂ Stoichiometry

Cu₃O₄ Stoichiometry

Ag₃O₄ Structural type

Calculated both HS and LS solutions. Only LS solution is stable.

Cu₂O₃ Stoichiometry

Compound (spin)	a (Å)	D (Å)	c (Å)	V/Z (Å) ³	ΔE/Z (eV)	Mag. (m _B)
Superoxide(EA) (FM)	2.794	5.927	6.582	50.661	0.006	0.626
Superoxide(EA) (AFM)	2.789	5.957	6.578	50.886	0.000	+0.627 -0.581

Superoxide(EA) Structural type

Impact of lattice dynamics on the stability of the models

Phonon dispersion curves

 Cu_3O_2

Ag₃O₄ structure type

X

S

Y

ΓΖ

Na₂CuO₂ structure type

U

500

400

Frequency (cm⁻¹) 000 000

100

Г

Convex Hull

- Thermodynamically, Convex Hull represents the enthalpy.
- Correctly predicted the stability of existing phases.
- ➢ 3 new Cu-O phases are stable with respect to elements Cu, O and Cu₂O phase.
- ▷ Cu_3O_4 and Cu_2O_3 are stable with respect to Cu_4O_3 .
- 3 new phases are metastable in respect to CuO phase.

Conclusions

- \blacktriangleright Crystal structures of 3 new Cu-O compounds are predicted Cu₃O₂, Cu₃O₄ and Cu₂O₃.
- \blacktriangleright Cu₃O₂ was predicted for Na₂CuO₂ type structure.
- \triangleright Cu₃O₄ was predicted as a low spin Ag₃O₄ structural type.
- \triangleright Cu₂O₃ was predicted as a AFM superoxide (EA) type.
- > The new structure types found to be dynamically stable.
- Correctly predicted the stability of existing binary Cu-O phases.
- \blacktriangleright The newly predicted Cu-O phases are stable with respect to elements Cu, O and Cu₂O phase.
- \succ Cu₃O₄ and Cu₂O₃ are stable with respect to Cu₄O₃.

Acknowledgements

The European Regional Development Fund, Research and Innovation Operational Programme, for project No. ITMS2014+: 313011W085.

Scientific Grant Agency of the Slovak Republic, grant No. VG 1/0223/19.

The Slovak Research and Development Agency, grant No. APVV-18-0168.

Aurel supercomputing infrastructure in CC of Slovak Academy of Sciences acquired in projects ITMS 26230120002 and 26210120002 funded by ERDF.

Thank you for your attention!

Sankari Sampath: Cu-O phases from ab-initio