COMPARISON OF MICROWAVE VACUUM DRYING WITH TRADITIONAL RICE BRAN STABILIZATION METHODS: IMPACT ON EXTRACTED OIL QUALITY

Mary Michelle Velasquez¹ & Casiana Blanca Villarino¹

¹Department of Food Science and Nutrition, College of Home Economics, University of the Philippines Diliman, Quezon City, Metro Manila 1101, Philippines

- **Rice bran** is the outer brown layer of the rice (*Oryza sativa*) grain that is obtained from the removal of the starchy endosperm during the milling process.
- It has high nutritional value and is an excellent source of **oil.**

Da Silva, Sanches, & Amante, 2006; Nagendra Prasad et al., 2011 Image from: <u>http://www.knowledgebank.irri.org/images/stories/rice-husk-diagram.jpg</u>

• Rice bran oil is a natural rich source of significant biologically active constituents such as γ-oryzanol, tocopherols, tocotrienols and phytosterols that have anti-cancer, antioxidant properties, and cholesterol-lowering effect on serum.

Selected bioactive components of rice bran and their biological activities (Borresen & Ryan, 2014).

Bioactive component	Examples	Biological activity	
γ-oryzanol	Combination of ferulic	• Antibacterial	
	acid, esters of sterol and	 Antioxidant 	
	triterpene alcohols	Cancer chemoprevention	
		 Reduces cholesterol absorption 	
Vitamin E	α-tocopherol, γ-	• Antibacterial	
	tocopherol, tocotrienols	 Antioxidant 	
		Cancer chemoprevention	
	•	Reduces cholesterol absorption	
Polyphenols	Ferulic acid, α-lipoic acid, caffeic acid, salicylic acid	• Antibacterial	
		 Anti-inflammatory 	
		 Antioxidant 	
		 Antiproliferative effect on cancer 	
Phytosterols	ß-sitosterol, campesterol,	Anti-inflammatory	
	stigmasterol	 Antioxidant 	
		Cancer prevention	
		Reduces cholesterol absorption	
		Stimulates lymphocyte proliferation	
Amino acids	Lysine	Growth and development	
		 Hypoallerginicity 	

Borresen & Ryan, 2014; Liang et al., 2014

• However, rice bran has limited applications in food due to the rapid development of rancidity upon rice milling, making it unsuitable for human consumption.

• Stabilization is done to inactivate deteriorating enzymes in the rice bran and extend its shelf life.

- Heat treatment is the most common method of stabilization in rice bran.
- ↑ temperature → enzyme denaturation → inactivation of lipolytic enzymes

• Common drying techniques include dry heating (DH), microwave heating (MH) and vacuum drying (VD).

Heat treatment	Heating requirements	Disadvantages
Dry heating (DH)	↑ temperature↑ time	Scorching of bran due to severe heating conditions
Microwave heating (MH)	\uparrow temperature \downarrow time	Scorching of bran due to non-uniform heating
Vacuum drying (VD)	\downarrow temperature \uparrow time	Inefficient use of energy

- Microwave vacuum drying (MVD) is a potential stabilization method for rice bran that combines the advantages of microwave heating and vacuum drying.
- MVD utilizes microwave radiation in a vacuum environment to generate heat at a lower temperature and to allow rapid mass and energy transfer for increased drying rate.

OBJECTIVES

- To investigate the effects of stabilization methods i.e. dry heating (DH), microwave heating (MH), vacuum drying (VD) and microwave vacuum drying (MVD) on important quality parameters of:
 - rice bran (i.e. moisture content and color)
 - rice bran oil (i.e. oil yield, free fatty acid content, peroxide value and antioxidant capacity)

SAMPLE COLLECTION

- Freshly milled rice bran was obtained from a local rice miller in Bulacan, Central Luzon, Philippines.
- The collected samples were sieved immediately using a Standard Test Sieve No. 45 to screen unwanted filth and to obtain a uniform particle size of less than 350µm. The sieved samples were collected in zip lock plastic bags and stored in a chest type freezer -20°C until stabilization.

STABILIZATION OF RICE BRAN

Stabilization method ¹	Heating parameters	Equipment	Reference
Dry heating	100°C, 30 min	Weber Electric Oven, Philadelphia, USA	Sharma et al. (2004)
Microwave heating*	720 W microwave power, 6.7 min, 500g bran load capacity	Microwave Oven Model X2-20ES Whirlpool, Michigan, USA	Ramezanzadeh et al., (1999)
Vacuum drying	65°C, 5 h, 30 mm Hg	Vacuum Oven Model Hinotek, Ningbo, Zheijang, China	AOAC (2000)
Microwave vacuum drying	992 W microwave power, 20 kPa vacuum pressure, 75 rotation speed, 24.66 min, 549g bran load capacity	Microwave Vacuum Dryer designed and developed by Metals Industry Research and Development Center (MIRDC), Department of Science and Technology, Philippines	Villarino et al.

¹Stabilization methods were done in duplicate.

*moisture content of the sieved rice bran was adjusted through the addition of deionized water respective to a 20:3 w/v bran-to-water ratio to prevent charring

STABILIZATION OF RICE BRAN

- Unstabilized rice bran was set aside as control.
- All stabilized rice bran samples were placed in ziplock polyethylene bags upon cooling to room temperature and stored in a freezer at -20°C until further use.

HEXANE EXTRACTION OF OIL

20 g rice bran Addition of hexane in a 1:3 w/v bran-to-hexane ratio Stirring at 1150 rpm for 1 h at room temperature (25°C) Centrifugation at 6000 rpm for 30 min Vacuum filtration Rotary evaporation of oil miscella at 40°C for 10 min

Oil extraction yield was defined as percent (%) g oil/ g rice bran

Extracted oil samples are stored at -20 °C for further analysis

METHODS

DETERMINATION OF RICE BRAN AND RICE BRAN OIL QUALITY

Sample	Factor	Parameters measured	Method
	Moisture content	% moisture (dry basis)	Rapid moisture analyzer (Uni Bloc MOC63u, Shimadzu, Kyoto, Japan)
Rice bran	Color	L*, a^* , b^* values Color difference ($\triangle E$) between the control and the stabilized rice bran	Colorimeter (Model Colorflex E2, Hunterlab Inc., Reston Virginia, USA)
Rice bran oil	Oil extraction yield	% g oil/ g rice bran	Hexane extraction by Wang et al. (1999) with modifications
	Free fatty acid content	% FFA as oleic acid	Titration (Chia et al., 2015)
	Peroxide value	milliequivalent of peroxide oxygen per kg of the oil sample (meq/kg)	Titration (Chia et al., 2015)
	Total antioxidant capacity	Trolox equivalents (TE)/g oil % scavenging activity (%SA)	Modified ABTS assay by Thaipong et al. (2006) and Martysiak-Zurowska & Wenta (2012) Modified DPPH assay by Thaipong et al. (2006)

STATISTICAL ANALYSIS

- All samples (i.e. DH, MH, VD and MVD) including the control were assessed in duplicates.
- One-way Analysis of Variance (ANOVA) was used to compare treatment means followed by Duncan's Multiple Range Test for mean separation when F was significant
- **Dunnett's Test** was used for the mean separation of unstabilized (control) and stabilized samples.
- All statistical tests were performed using SPSS software version 17 at a probability level of 0.05.

EFFECT ON MOISTURE AND COLOR OF RICE BRAN

	Moisture	Color			
Stabilization method ²	content (% dry	L*	a*	в*	ΔE
	basis)				
MVD	$8.43^{b*} \pm 0.27$	$70.58^{c*} \pm 0.09$	$3.30^{a*} \pm 0.03$	$20.59^{a} \pm 0.02$	$1.94^{ab} \pm 1.61$
MH	$13.03^{\circ} \pm 1.14$	$68.66^{a*} \pm 0.40$	$4.18^{c*} \pm 0.22$	$23.00^{c*} \pm 0.11$	$4.76^{\circ} \pm 1.84$
VD	$9.04^{b*} \pm 0.11$	$71.92^{d} \pm 0.79$	$3.15^{a} \pm 0.05$	$20.36^{a} \pm 0.22$	$0.67^{a} \pm 0.64$
DH	$2.77^{a*} \pm 0.44$	$69.91^{b*} \pm 0.37$	$3.71^{b*} \pm 0.15$	$22.24^{b*} \pm 0.49$	$3.39^{\rm bc} \pm 0.83$
Unstabilized	13.58 ± 0.47	72.45 ± 1.45	<i>3.09</i> ± <i>0.11</i>	20.14 ± 0.51	_

¹Mean \pm standard deviation.

²MVD, microwave vacuum drying; MH, microwave heating; VD, vacuum drying; DH, dry heating abc Values with different superscripts within the same column denotes significant difference (p<0.05) using Duncan's Test

*Denotes significant difference (p < 0.05) with unstabilized rice bran using Dunnett's Test

- No significant difference on moisture content of MH and unstabilized samples
- Highest ΔE values were observed in MH- and DH-stabilized samples
- Lowest ΔE values were observed in VD- and MVD-stabilized samples

EFFECT ON MOISTURE AND COLOR OF RICE BRAN

- No significant difference on moisture content of MH and unstabilized samples
 - Addition of water prior to drying to prevent charring contributed to additional moisture that needed to be removed during MH treatment
- Highest ∆E values were observed in MH- and DH-stabilized samples
 ➢ Elevated temperatures may have caused a larger extent of browning in samples
- Lowest ∆E values were observed in VD- and MVD-stabilized samples
 ➢ Reduced pressure during drying slowed down Maillard reaction in the bran

Stabilization	Oil extraction yield	FFA	PV
method ²	(%)	(% oleic acid)	(meq/kg oil)
MVD	$9.34^{c*} \pm 0.64$	$11.15^{a*} \pm 0.94$	$12.28^{a*} \pm 0.64$
MH	$7.74^{a} \pm 0.35$	$13.71^{b*} \pm 1.25$	15.33 ^b * ± 1.21
VD	$8.53^{\rm b} \pm 0.66$	$17.01^{\circ} \pm 1.77$	$18.92^{\circ} \pm 0.90$
DH	$8.74^{\rm bc*} \pm 0.68$	$12.05^{a*} \pm 1.03$	$14.73^{b*} \pm 0.90$
Unstabilized	7.71 ± 0.60	17.44 ± 2.03	<i>19.49</i> ± <i>1.07</i>

¹Mean \pm standard deviation.

²MVD, microwave vacuum drying; MH, microwave heating; VD, vacuum drying; DH, dry heating ^{abc}Values with different superscripts within the same column denotes significant difference (p<0.05) using Duncan's Test

*Denotes significant difference (p < 0.05) with unstabilized rice bran using Dunnett's Test

- No significant difference on oil extraction yield between MH- and VD-stabilized samples and unstabilized
- No significant difference on FFA and PV between VD-stabilized samples and unstabilized
- Lowest FFA and PV values were observed in samples stabilized by MVD, DH and MH

Stabilization — method ²	DPPH As	ssay	ABTS Assay	
	TE^3	% Scavenging	TE^3	% Scavenging
	(mg TE/100g oil) ^{ns}	activityns	(mg TE/100g oil) ^{ns}	activityns
MVD	188.45 ± 3.24	76.85 ± 1.32	87.74 ± 5.98	76.36 ± 5.46
MH	184.20 ± 4.92	75.45 ± 2.00	91.65 ± 5.03	79.92 ± 4.59
VD	187.82 ± 3.51	76.64 ± 1.43	92.84 ± 3.70	81.01 ± 3.37
DH	187.36 ± 3.82	76.45 ± 1.55	90.72 ± 3.21	79.07 ± 2.93
Unstabilized	184.58 ± 2.57	75.32 ± 1.05	<i>91.62</i> ± <i>2.67</i>	79.89 ± 2.43

¹Mean \pm standard deviation.

²MVD, microwave vacuum drying; MH, microwave heating; VD, vacuum drying; DH, dry heating

³TE – Trolox equivalent

^{ns}Denotes no significant difference (p<0.05) between stabilization methods using Duncan's Test *Denotes significant difference (p<0.05) with unstabilized rice bran using Dunnett's Test

• No significant interaction effects on Trolox equivalent and % scavenging activity of oils from different rice bran samples determined by both ABTS and DPPH assays

- No significant difference on oil extraction yield between MH- and VD-stabilized samples and unstabilized
 - ➤ MH: high amount of moisture in samples possibly reduced the lipid extraction efficiency of hexane as it is insoluble in water
 - ➢ VD: low drying temperature may have created a lesser degree of tissue rupture in the bran, thus low solvent penetration on the cell membrane during extraction
- Improved oil extraction yield by MVD and DH
 - May be due to the modification of cell wall during drying resulting in increased porosity and enhanced solvent permeability during extraction

- No significant difference on FFA and PV between VD-stabilized samples and unstabilized
 - ➢Low drying temperature may not be adequate to cause inactivation of lipolytic enzymes in bran
- Lowest FFA and PV values were observed in samples stabilized by MVD, DH and MH

Suggests that MVD, DH and MH suppressed activity of lipolytic enzymes in the bran

- No significant interaction effects on Trolox equivalent and % scavenging activity of oils from different rice bran samples determined by both ABTS and DPPH samples
 - Comparable antioxidant capacity of unstabilized and stabilized rice bran oil samples may be due to the preservation of heat-sensitive compounds in unstabilized samples because no heat treatment was applied

- Rice bran was successfully stabilized by MVD, resulting rice bran and rice bran oils with similar qualities to those stabilized using traditional methods.
- Further studies on the bioactive compounds of rice bran oil may be needed to verify the effects of stabilization methods on the antioxidant properties of oils.

REFERENCES

AOAC. Official Methods of Analysis, 17th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 2000.

Bondaruk, J.; Markowski, M.; Błaszczak, W. Effect of drying conditions on the quality of vacuum-microwave dried potato cubes. *J Food Eng* **2007**, *81*, 306–312.

Borresen, E.C.; Ryan, E.P. Rice bran. A food ingredient with global public health opportunities. In *Wheat and Rice in Disease Prevention and Health*; R.R. Watson; V.R. Preedy; S. Zibadi; Academic Press: Cambridge, USA, 2014; pp. 301–310.

Bureau of Agricultural Research. Available online: http://www.bar.gov.ph/index.php/chronicle-home/archives-list/148-april-2008-issue/2124-promising-potentials-of-rice-bran-explored (accessed on 22 February 2017).

Chia, S.; Boo, H.; Muhamad, K.; Sulaiman, R.; Umanan, F.; Chong, G. Effect of subcritical carbon dioxide extraction and bran stabilization methods on rice bran oil. *J Am Oil Chem Soc* **2015**, *92*, 393-402.

Efthymiopoulos, I.; Hellier, P.; Ladommatos, N.; Kay, A.; Mills Lamptey, B. Effect of solvent extraction parameters on the recovery of oil from spent coffee grounds for biofuel production. *Waste Biomass Valor* **2019**, *10*, 253-264.

Godber, J.S. Oil from rice and maize. In *Encyclopedia of Food Grains*, 2nd ed.; Wrigley, C.; Corke, H.; Seetharaman, K.; Faubion, J.; Elsevier Ltd.: Oxford, UK, 2016; Volume 3, pp. 453-457.

Godwin, A.; Daniel, G.A.; Shadrach, D.; Elom, S.A.; Nana Afua, K.A.-B; Godsway, B.; Joseph, K.G.; Sackitey, N.O.; Isaak, K.B.; Wisdom, A. Determination of elemental, phenolic, antioxidant and flavonoid properties of Lemon grass (Cymbopogon citratus Stapf). *Int Food Res J* **2014**, *21*, 1971-1979.

Ibrahim G.E.; El-Ghorab A.H.; Osman F.; El-Massry K.F. Effect of microwave heating on flavour generation and food processing. In *The Development and Application of Microwave Heating*; Cao, W.; In Tech: Rijeka, Croatia, 2012; pp. 17–44.

Kim, S.-M.; Chung, H.-J.; Lim, S-T. Effect of various heat treatments on rancidity and some bioactive compounds of rice bran. J Cereal Sci 2014, 60, 240-248.

Lamberts, L.; Brijs, K.; Mohamed, R.; Verhelst, N.; Delcour, J.A. Impact of browning reactions and bran pigments on color of parboiled rice. *J Agric Food Chem* 2006, *54*, 9924–9929.

REFERENCES

Liang, Y.; Gao, Y.; Lin, Q.; Luo, F.; Wu, W.; Lu, Q.; Liu, Y. A review of the research progress on the bioactive ingredients and physiological activities of rice bran oil. *Eur Food Res Technol* **2014**, *238*, 169-176.

Malekian, F.; Rao, R.M.; Prinyawiwatkul, W.; Marshall, W.E.; Windhauser, M.; Ahmedna, M. *Lipase and Lipoxygenase Activity, Functionality, and Nutrient Losses in Rice Bran during Storage*. Louisiana Agricultural Center, Louisiana Agricultural Experiment Station: Baton Rouge, LA, 2000. Bulletin Number 879.

Martysiak-Żurowska, D.; Wenta, W. A comparison of ABTS and DPPH methods for assessing the total antioxidant capacity of human milk. *Acta Sci Pol Technol Aliment* **2012**, *1*, 83-89.

Nagendra Prasad, M.N.; Sanjay, K.R.; Shravja Khatokar, M.; Vismaya, M.N.; Nanjunda Swamy, S. Health benefits of rice bran - a review. Title of the article. *J Nutr Food Sci* **2011**, *3*, 1–7.

Park, I.; Park, J.; Lee, H.; Kum, J. Effects of air, microwave, and microvacuum drying on brown rice quality. J Korean Soc Appl Biol Chem 2012, 55, 523-528.

Ramezanzadeh, F.M.; Rao, R.M.; Windhauser, M.; Prinyawiwatkul, W.; Marshall, W.E.; Tulley, R. Prevention of hydrolytic rancidity in rice bran during storage. *J of Agric Food Chem* **1999**, 47, 3050-3052.

Ratti, C. Freeze and vacuum drying of foods. In *Drying Technologies in Food Processing*; Chen, X.D. & Mujumdar, A.S. Blackwell Publishing Ltd: Oxford, England, 2008; pp. 225-253.

Rodchuajeen, K.; Niamnuy, C.; Charunuch, C.; Soponronnarit, S.; Devahastin, S. Stabilization of rice bran via different moving-bed drying methods. *Dry Technol* **2016**, *34*, 1854-1867.

Sansak, S.; Jongyingcharoen, J.S. Effect of hot air assisted infrared drying on drying characteristics and quality of rice bran pellets. *MATEC Web Conf* **2018**, *192*, 03040.

Scaman, C. H.; Durance, T. D.; Drummond, L.; Sun, D.-W. Combined microwave vacuum drying. In *Emerging Technologies for Food Processing*, 2nd ed.; Sun, D.-W.; Academic Press: Cambridge, USA, 2014; pp. 427–445.

Sharma, H.R.; Chauhan, G.S.; Agrawal, K. Physico-chemical characteristics of rice bran processed by dry heating and extrusion cooking. *Int J Food Prop* **2004**, *7*, 603–614.

REFERENCES

Thaipong, K.; Boonprakob, U.; Crosby, K.; Cisneros-Zevallos, L.; Byrne, D. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. *J Food Compos Anal* **2006**, *19*, 669-675.

Thanonkaew, A.; Wongyai, S.; McClements, D.J.; Decker, E.A. Effect of stabilization of rice bran by domestic heating on mechanical extraction yield, quality, and antioxidant properties of cold-pressed rice bran oil (Oryza sativa L.). *LWT Food Sci Technol* **2012**, *48*, 231–236.

Villarino, C.B.J.; Azanza, M.P.; Ramos, H.J.; Rogelio, J.P.; Soriano J.K.; Obile, M.V; Abulencia, G.L. Effects of microwave vacuum drying on the quality and stability of rice bran: response 1 surface modelling and on-site verification.

Wang, M.; Hettiarachchy, N.S.; Qi, M.; Burks, W.; Siebenmorgen, T. Preparation and functional properties of rice bran protein isolate. *J Agri Food Chem* **1999**, *47*, 411–416.