

Descriptive aroma changes in selected Philippine virgin coconut oil (VCO) during storage at elevated temperatures

Casiana Blanca J. Villarino, Airisse Rae P. Basinang, Mary Michell M. Velasquez, Patricia Karol A. Ong, Jin Mark DG. Pagulayan, Ma. Concepcion C. Lizada,

VIRGIN COCONUT OIL (VCO)

Obtained from fresh mature coconut kernel processed by mechanical or natural means, with or without application of heat, while **maintaining the natural state of the oil** ^[1].

A **functional food** with impressive health benefits such as ^[2]:

- Stimulates metabolism because of medium-chain fatty acids,
- Supports the immune system due to rich amount of lauric acid,
- Helps keep diabetes in check by improving insulin secretion,
- Helps with weight loss.

On-going clinical study in the Philippines also shows the potential of VCO to **reduce coronavirus load by 60-90% for** <u>mild cases</u> of COVID19^[3].

Global Demand...

The global demand for VCO is **expected to grow by 2.5%** in the next 5 years. The increasing health-conscious consumers boosted the growth of VCO for its impressive health benefits to maintain good health and lifestyle ^[4].

Export Commodity

Philippines is one of the <u>major exporters of VCO</u>, a premium export commodity of the country ^[2].

The rising global demand for this commodity challenges the need to **maintain the quality parameters**, such as <u>sensory properties especially</u> <u>during storage</u>, of VCO.

Image source: https://vemaps.com/philippines

Descriptive sensory properties is one of the parameters which may help maintain the quality of VCO

It distinguishes VCO from other coconut oil, as well as differentiate its various processes .

It also **reflects the type of process** the oil is produced with, as the production retains its natural state ^[2].

Volatile organic compounds, present in the oil, contribute to the <u>sensory profile of VCO</u> which can be <u>affected by</u> external factors such as <u>variation of storage conditions</u> especially at the consumers' end ^[5].

OBJECTIVE OF THE STUDY

The study aimed to determine the changes in the descriptive aroma profile of three (3) differently processed VCO stored under elevated temperatures.

Ethical Consideration

Ethical clearance (**NEC Code: 2019-001-Villarino-VCO**) was approved by the National Ethics Board of the Department of Science and Technology – Philippine Council for Health Research and Development.

VCO Samples

- Three (3) differently processed (i.e. **fermented**, **centrifuged**, **expeller-pressed**) VCO samples were used.
- Obtained from local VCO producers from Quezon Province and Laguna, Philippines.
- Stored in incubators (IN260 Memmert, Germany) at elevated temperatures of 35°C, 40°C, and 45°C.
- Evaluated by trained panelists.

Panelists

- Eight (8) trained panelists
- 6 females, 2 males
- Ages 24-56 years.

Panelists were recruited and selected from a three-phase screening process; taste recognition, odor recognition, and intensity ranking tests ^[6].

Training

- Generic descriptive method ^[1,6] was used to train and evaluate VCO samples.
- A total of 30 hours (15 sessions) was conducted to determine perceivable aroma, refine the standard references, techniques for evaluation and calibration of the panel.

Training

Table 1	. Activities	for	each	trainina	sessions
			••••••		

Session	Activity		
0	Orientation of the panelists (introduction to the study, samples and the sensory evaluation protocols)		
1	Refining descriptors		
2-10	Establishment of reference standards		
11-15	Calibration, refining, and polishing of panel performance		

Table 2. Definition of descriptors used by the trained panel to describe virgin coconut oil

Descriptor	Definition
Nutty	The aroma associated with the 2 nd layer of fresh coconut kernel with testa
Latik	The aroma associated with cooked, sweet, coagulated coconut milk
Acid	The aroma associated with acetic acid solution
Rancid	The aroma associated with old, unpleasant, soapy, acrid oil

Sample Evaluation

A 7mL sample was presented in 30 mL-capacity glass containers with screw caps, coded with 3-digit random numbers, maintained at room temperature (30±2°C).

Samples consisting of six (6) VCO samples were presented in a clean tray lined with white bond paper together with reference standards for aroma, and a tablet device for the developed web-application for the **answer sheet** of the panelists.

Sample Evaluation

Before evaluation:

Panelists were advised to avoid scented products and were instructed to use the provided unscented cleansing soap (Cetaphil, USA) to wash hands to remove unnecessary scent.

During evaluation:

- 1. First smelled the back of the palm to clear their nose.
- 2. Swirled the first sample bottle five times clockwise, five times counter clockwise making sure the oil reached the neck of the bottle.
- 3. Unscrewed the cap near their nose.
- 4. Tilted the opened bottle 45° towards their nose level.
- 5. Did three quick sniffs.
- 6. Evaluated the samples within five seconds.

Elevated Temperature Storage

Samples were stored in three varying temperatures with six different sampling points per temperatures based on a Q_{10} of 2 for lipid oxidation ^[7].

Temperature (°C)	Sampling point (days)
35	0, 42, 84, 126, 168, 210, 255
40	0, 30, 60, 90, 120, 150, 180
45	0, 21, 42, 63, 84, 105, 127

Table 3. Sampling interval for elevated storage temperatures.

Aroma Profile

Reference standards for the descriptive aroma of VCO

VCO samples were initially evaluated to have **predominant aroma profile based on the process** they were produced with. Centrifuged VCO was initially described to have predominant nutty aroma while expeller-pressed was described to have predominant *latik.* Meanwhile, fermented samples initially exhibited acid aroma,

Sample Evaluation

• Elevated storage temperature: 35° C

35°C Rancid Aroma

●F ●C ●E

Sample Evaluation

• Elevated storage temperature: 40°C

Sample Evaluation

• Elevated storage temperature: 45° C

CONCLUSION

- The changes in the aroma of the VCO samples stored at varying elevated temperatures exhibited polynomial behavior during storage.
- At the initial stages of storage, aroma perception increased followed by a decline which may be due to the volatilization of the volatile organic compounds responsible for the aroma perceived in VCO samples.
- Rancid aroma intensity of samples surprisingly decreased, except for expeller-pressed VCO stored at 35°C, which can be due to the volatilization of free fatty acids responsible for the rancid aroma ^[5]. This observation may also be attributed to the depletion of microbial activity, at higher temperatures, responsible for hydrolysis of free fatty acid ^[8] which can result to the detection of rancid aroma.

RECOMMENDATION

It is recommended that **further investigation**, specifically **on the rancid aroma** perception of VCO samples should be conducted as it may have implications on the storage requirements of VCO.

References

- Villarino, C.B.J., Dy, L.M., Lizada, M.C.C. Descriptive sensory evaluation of virgin coconut oil and refined, bleached and deodorized coconut oil. LWT – Food Science and Tech. 2007. Volume 40. 193 – 199. doi:10.1016/j.lwt.2005.11.007
- Marina, A.M., Che Man, Y.B., Amin, I. Virgin coconut oil: emerging functional food oil. Trends in Food Science. 2009. Volume 20. 481 – 487. doi: 10.1016/j.tifs.2009.06.003
- 3. Rappler. Available online: <u>https://www.rappler.com/nation/virgin-coconut-oil-lowers-coronavirus-load-mild-cases-philippine-study</u> (accessed on 20 October 2020).
- 4. Goldstein Market Intelligence. Available online: <u>https://www.goldsteinresearch.com/report/virgin-coconut-oil-market-outlook-2024-global-opportunity-and-demand-analysis-market-forecast-2016-2024</u> (accessed on 19 October 2020).
- 5. Santos, J.E.R., Villarino, C.B.J., Zosa, A.R., Dayrit, F.M. Analysis of volatile organic compounds in virgin coconut oil and their sensory attributes. *Phil. Journ. Of Science*. **2011**. *Volume* 140 pp. 161 171.
- 6. Lawless, H.T., Heymann, H. Descriptive Analysis. In Sensory Evaluation of Food, 2nd ed.; Springer, New York, USA, 2010; pp. 227 253.
- 7. Office of Technology Assessment (OTA). Open Shelf-Life Dating of Food. **1979**. Office of Technology Assessment: Washington, USA.
- 8. Hatton, P. Characterization and control of ketonic rancidity in the lauric acid oils. Sheffield Hallam University, United Kingdom. Personal communication. 1989.