Ab-initio wave packet dynamical simulation of defects in 2D materials

G. I. Márk and R. P. Vancsó

Centre for Energy Research, Institute for Technical Physics and Materials Science, Hungary

www.nanotechnology.hu

Outline

- The wave packet dynamical method
- How to prepare the initial state?
- Bloch function wave packet construction
- Bloch function wave packet scattering on defect
- Band structure in kinetic energy operator
- Describing
 - infinite 2D crystal with kinetic energy and
 - local defects by potential energy

General principles of the wave packet dynamical method (WPD)

Scattering of a hardcore potential

2D Probability density ► time

Real part of the wawe packet

Carbon pseudopotential

Time dev.- 2D sections

Modelling the transport through a grain boundary

Model system – STM tip and two graphene grains

Calculating the transmission

$$j(\vec{r}, E) = -\frac{i\hbar}{2m} [\psi^* \nabla \psi - \psi \nabla \psi^*]$$
$$T(E) = I_{transz}(E) / I_{he}(E)$$

P. Vancsó et al, Appl. Surf. Sci., vol. 291, pp. 58–63, 2014.

ρ(E) -- grain boundary in graphene

Beam splitting

Localized states on GB

How to create precisely controlled initial wave packets? Build them from Bloch waves!

If $V(\vec{r})$ is periodic:

 $\varphi(\vec{r}, \vec{k}_{Bloch}) = u(\vec{r}, \vec{k}_{Bloch})e^{i\vec{k}_{Bloch}\vec{r}}$, where $u(\vec{r}, \vec{k}_{Bloch})$ is periodic and \vec{k}_{Bloch} is the Bloch wave vector. These $\varphi(\vec{r}, \vec{k}_{Bloch})$ functions are called Bloch functions.

Graphene Bloch functions

$$\varphi(\vec{r}, \vec{k}_{Bloch}) = u(\vec{r}, \vec{k}_{Bloch})e^{i\vec{k}_{Bloch}\vec{r}}$$

Construction of wave packets from graphene Bloch functions

Time development of a Bloch function Wave packet

Pristine graphene

Graphene with defect

Difference of (f) and (c)

How to make WPD for other materials?

 In the split operator method the kinetic energy is calculated in k space

This is nothing else but the $E = k^2/2$ free space dispersion relation ... what happens, if we modify this?

EUREKA!!! Change the dispersion Easy to calculate from the relation!! band structure

Test case: graphene tight binding dispersion relation

Graphene TB dispersion relation

 $E_{1,2} = \alpha \pm A^{1/2} \beta$ $A = 3 + 2 \cos \left[\mathbf{k} \cdot (\mathbf{a}_1 + \mathbf{a}_2) \right] + 2 \cos \left(\mathbf{k} \cdot \mathbf{a}_2 \right) + 2 \cos \left(\mathbf{k} \cdot \mathbf{a}_1 \right)$

Time development – K point

Time development – K' point

Time development – K and K' point

Time development – 3 K points

Time development – 3 K and 3 K' points

Graphene and MoS₂ dispersion relations

Graphene conduction band

 $E \in \left[0.00, 9.00\right]\!\!eV$

MoS₂ valence band

 $E \in [-1.06, -0.10]eV$

MoS₂ conduction band

 $E \in [1.58, 2.70]eV$

MoS₂ wave packet dynamics

MoS₂ valence band

G. I. Márk et al, Phys. Status Solidi Basic Res., vol. 254, no. 11, 2017.

MoS₂ conduction band

Inserting physics in both the kinetic and potential energy operator

- H = K + V
- K(k) kinetic energy operator, defined in k space, describes the infinite crystal lattice
- V(r) potential energy operator, defined in r space, describes the local perturbations

Wave packet spreading on graphene without and with local defect

- K(k): graphene tight-binding dispersion relation
- V(r) = 0

- K(k): graphene tight-binding dispersion relation
- V(r): localized defect, V₀=-2 eV. $\Delta X = 0.48$ nm

- Probability density of the difference wave function, Abs(Psi_{withpot} – Psi_{free})^2
- Scattering dictated by a "modified Huygens principle" the local scattering has a hexagonal pattern, because of the anisotropic nature of the graphene dispersion relation

How to proceed?

- Calculate WPD for more 2D materials
- Multidomain method: different E(k) for different regions (e.g. grain boundaries)

THANK YOU FOR THE ATTENTION! **LHANK AOD EOB THE ALTENTION!**

OUESTIONS