

Enhanced Efficiency of Inverted Perovskite Solar Cells by Passivating Hole Transport Layer with POSS

ment of Chemical and Materials Engineering, National Yunlin University of Science and Tech

Bo-Tau Liu, Hong-Ru Lin

15-30 NOV. 2020

Source: REN21 Policy Database

A: Na⁺ \cdot K⁺ \cdot Ca²⁺ \cdot Sr²⁺ \cdot Pb²⁺ \cdot Ba²⁺

B: Ti⁴⁺ \cdot Cd²⁺ \cdot Nb⁵⁺ \cdot Mn⁶⁺ \cdot Fe³⁺ \cdot Zr⁴⁺

X: $O^{2-} \cdot F^{-} \cdot Cl^{-} \cdot Br^{-} \cdot I^{-}$

CH₃NH₃PbI₃ is one of the most used perovskite materials

Common Structure

Interface passivation

Enhancement by Polyhedral Oligomeric Silsesquioxane (POSS)

Ag/LiF TPBi Perovskite/POSS PEDOT:PSS/PVK ITO-glass

POSS

J. Phys. Chem. Lett. 2016, 7, 4398

POSS-NH₂

Solar RRL 2018, 2, 1800069

Ethylenediamine (EDA) EDA:Ni⁺=1: $\frac{2}{3}$ molar ratio

> On hotplate stirring overnight keep at 60 °C

	Boiling point
ethylene glycol	197.3 °C
2-Methoxyethanol	124-125℃

NiOx precursor

0.6M Nickel(II) nitrate(99.9985%, Alfa Aesar) 2-Methoxyethanol Sol.

Device Fabrication

20s

Added Anisole as antisolvent within 10s

5000 rp 20s

MA0701 POSS/ NiOx SEM images

Effect of POSS on J-V curve

Sample	Voc [volt]	Jsc [mA cm ⁻²]	FF [%]	Average PCE [%] [Best]	
Control	1.053	18.004	70.18	12.55±0.49 (13.30)	
POSS-0.005	1.048	18.391	73.78	12.64±1.23 [14.14]	
POSS-0.01	1.065	20.521	71.33	14.75±0.71 (15.58)	
POSS-0.015	1.074	19.222	66.16	12.85±0.35 [13.66]	
POSS-0.05	1.056	15.206	71.60	10.91±0.62 (11.50)	7

Effect of POSS on photovoltaic properties

➤ In this study, we are the first to attempt to use POSS to passivate NO_X. The PSCs with fluorine-doped tin oxide (FTO)/NO_X/POSS/MAPbI₃/PC₆₁BM/Bathocuproine (BCP)/Ag structure were fabricated.

- The result showed that the POSS passivation improved significantly crystal size of perovskite, short circuit current (J_{SC}), and PCE.
- At 0.01-wt% POSS, the PCE increase from 13.3 to 15.58%, an enhancement of 17%. This enhancement was mainly due to the increase of the J_{SC} from 18.0 to 20.5 mA/cm², an increase of 13%.

THANKS FOR YOUR LISTENING!

