Synthesis and Characterization of Gefitinib and Paclitaxel Dual Drug Loaded Cockle Shell (*Anadara granosa*) Derived Calcium Carbonate Nanoparticles †

Chemmalar S 1, Intan Shameha Abdul Razak 2, Che Abdullah Che Azurahanim 3, Nor Asma Abdul Razak 4, Loqman Haji Mohamad Yusof 5 and Md Zuki bin Abu Bakar 6

1 Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor 43400, Malaysia; gs52461@student.upm.edu.my
2 Department of Veterinary Pre-Clinical Science, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor 43400, Malaysia; intanshameha@upm.edu.my
3 Department of Physics, Faculty of Science, Biophysics Laboratory, Laboratory of Cancer research, Institute of Bioscience and Material Synthesis & characterization Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor 43400, Malaysia; azurahanim@upm.edu.my
4 Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor 43400, Malaysia; norasmarazak@upm.edu.my
5 Department of Companion Animal Medicine and Surgery, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor 43400, Malaysia; loqman@upm.edu.my
6 Department of Veterinary Pre-Clinical Science, Faculty of Veterinary Medicine and Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor 43400, Malaysia; zuki@upm.edu.my

† Presented at the 2nd International Online-Conference on Nanomaterials, 15–30 November 2020; Available online: https://iocn2020.sciforum.net/.

Published: 15 November 2020

Abstract: Calcium carbonate nanoparticles have salient properties, such as biocompatibility, pH responsiveness, and the ability to alkalinate a tumor, hence reducing metastasis. A combination therapy regimen is normative for breast cancer, where, besides its side effects, toxic vehicles are required for certain drugs. This study is aimed at transforming the readily available Blood cockle shells (*Anadara granosa*) to calcium carbonate nanoparticles (CSCaCO3NP), loading them with Gefitinib (GEF) and Paclitaxel (PTXL). Facile top-down synthesis of CSCaCO3NP is comprised of grinding, sieving and stirring with Tween 80, followed by filtration and finally dry milling for 100 h. A ratio of 1 + 0.5:25 of GEF+PTXL: CSCaCO3NP in an equal admixture of DMSO and 0.05% Tween 80 buffer was used for drug loading. Loading content (%) and encapsulation efficiency (%) for GEF and PTXL in dual drug-loaded NP (GEF-PTXL-CSCaCO3NP) was 1.98 ± 0.11, 50.01 ± 2.18 and 0.92 ± 0.01, 45.60 ± 0.32, respectively. Field emission scanning electron micrographs revealed that the nanoparticles were almost spherical with the average diameter (nm) measuring 63.96 ± 22.3 and 87.20 ± 26.66 for CSCaCO3NP and GEF-PTXL-CSCaCO3NP, respectively. The Dynamic Light Scattering data gives the average diameter of CSCaCO3NP and GEF-PTXL-CSCaCO3NP as 179 ± 10.9 (nm) and 274 ± 23.22 (nm), respectively and polydispersive index of 0.3. Zeta potential was -17 ± 1.15 (mV) and 10.30 ± 1.7 (mV), respectively. Fourier-transform Infrared spectroscopy proves that CSCaCO3NP have encapsulated the drugs. X-Ray Diffraction data indicates that the aragonite phase is unaltered. N2 adsorption-desorption isotherms reveals that CSCaCO3NP are mesoporous and that the surface area had reduced from 10.68 ± 0.22 to 9.88 ± 0.24 m²/g after drug loading. For the first time, this work will describe the process that enabled to synthesize CSCaCO3NP which was used as a carrier to load GEF and PTXL and its salient characteristics.

Keywords: calcium carbonate nanoparticles; Gefitinib; Paclitaxel; dual drug loading; XRD; FTIR; mesoporous
1. Introduction

Cockle shells (Anadara granosa) are bivalve shellfish that grow along the shallow waters of the coastline of southeast Asia, east Asia, South Asia including Malaysia [1,2]. Cockle shell derived inorganic calcium carbonate nanoparticles (CSCaCO₃NP) are in focus in recent years due to its physicochemical and biocompatible properties. Their availability, low cost, safety, biocompatibility, pH-sensitive property, and slow biodegradability makes CSCaCO₃ nano-particles, the right candidate to be voted as a drug delivery system. In the past various drugs have been successfully loaded onto CaCO₃NP ranging from hormones [3], antibiotics [4], to even chemotherapeutic drugs [5]. Dual drug-carrying nanoparticles have more advantages since the nanoparticles help in improving the problem of solubility of hydrophobic drugs by encapsulating them and releasing them mostly at the tumor milieu. Paclitaxel (PTXL) and Gefitinib (GEF) are the two drugs aimed to be loaded together onto CSCaCO₃NP. Since, both GEF and PTXL are hydrophobic, to overcome the problem of solubility, they could be loaded onto the CSCaCO₃NP which is pH-dependent and also decompose slowly in the normal physiological pH (7.4) while displays a faster decomposition in the acidic pH (<6.5) of the tumor environments [6]. The physicochemical characterization of nanoparticles is very essential to determine their long-term stability and also their biological effects on tissues [7]. The major parameters required for physicochemical characterization of nanomaterials are shape, size, Poly dispersive index, surface charge, composition, and purity [8].

2. Methods

The synthesis of CSCaCO₃NP is comprised of two major steps. The first step was the synthesis of microparticles from cockle shells[9]. The second step comprised of preparing a slurry with 2 g of the 75-µm of CSCaCO₃ powder with 20mL of deionized water and 1mL of Tween 80. This suspension was stirred at 1000 rpm for 2 h and filtered. The filtrate was centrifuged for 10 min at 14,000 rpm and the supernatant was discarded. The pellet was dispersed upon the addition of 20 mL deionized water and then washed twice with deionized water. The collected nanoparticles were dried and undergoes ball milling at 120 rpm for 120 h. The resultant particles (CSCaCO₃NP) were characterized before loading the drugs.

For synthesizing dual drug loaded GEF-PTXL-CSCaCO₃NP, three groups, namely GEF1-PTXL, GEF2-PTXL, and GEF3-PTXL were assigned with concentration of GEF and PTXL being 400 µg + 200 µg, and varying concentrations of CSCaCO₃NP 10,000 µg, 15,000 µg, and 20,000 µg, respectively. PTXL and GEF dissolved in DMSO were added to 5 mL of CSCaCO₃NP suspension prepared with 0.05% Tween 80 buffer and DMSO in 50:50 ratio. The loading was achieved by continuous stirring at 200 rpm overnight at room temperature. The individual suspensions were centrifuged at 14,000 rpm for 10 min, followed by washing the pellet with deionized water and drying. The supernatant obtained after centrifugation contained the un-entrapped GEF and PTXL which was used to indirectly determine the amount of drug-loaded onto the nanoparticles using UV-Vis spectrophotometer. The encapsulation efficiency (EE%) and loading content (LC%) was determined as the average measurement of 3 independent measurements[10].

Physicochemical characterization of CSCaCO₃NP and GEF-PTXL- CSCaCO₃NP was conducted by High resolution Transmission electron microscopy (HR-TEM), Field emission Scanning electron microscopy (FESEM), Zeta potential and hydrodynamic diameter detection, Powder X-ray diffraction (PXRD), Fourier-transform infra-red spectroscopy (FT-IR) and BET analysis. For HR-TEM, the sample was added to 3 mL of 100% acetone and sonicated for 30 min. A drop of the sonicated solution was placed onto a carbon-coated copper grid and excess fluid was wicked off with a filter paper, followed by drying at room temperature for an hour and examined. For FESEM, the sample was dispersed onto 12 mm diameter aluminum sample holders using conductive carbon paint and then coated with the Platinum layer under vacuum and examined. These images were analyzed using ImageJ software. For Zeta potential, Polydispersity Index, and Hydrodynamic diameter analysis, 0.4 mg of the sample was dispersed in 15 mL deionized water and then sonicated for 30 min. After sonication, the sample was again double diluted with deionized water. Then, the sample was injected into disposable cuvettes, and hydrodynamic diameter was obtained from the intensity distribution by
cumulant analysis at light scattering angle of 173° using Zetasizer Nano ZS. All measurements were also carried out in duplicate of three independent experiments. PXRD patterns were obtained using the Shimadzu XRD-6000 powder diffractometer configured with Cu X-ray tube with 1.540562 Å. The samples were scanned at the rate of 40/min with diffraction angles from 4.0207° to 89.9527° at room temperature. The data was analyzed with X’pert HighScore Plus software. The samples were investigated using the Fourier infrared spectrophotometer (Model 100 series, Perkin Elmer) over the range of 4000 to 400 cm⁻¹ at a 2 cm⁻¹ resolution and averaging 64 scans/second. The obtained data was analyzed with OriginPro 9.0. For determining the surface area, Nitrogen absorption and desorption experiments were carried out with Micromeritics. The data generated were analyzed using BET (Brunauer-Emmett-Teller) and BJH (Barrett-Joyner-Halenda) models to determine the BET specific surface area and BJH mean pore size. Statistics were calculated using OriginPro 9.0, and Microsoft excel (Microsoft, WA, USA) for analyzing the mean and SD.

3. Results and Discussion

The structural integrity and physicochemical properties of intact nanoparticles must be preserved throughout the formulation process until the finished product. Milling technology has been applied to synthesize poorly water-soluble compounds [11]. The current top down technique used to synthesize the CSCaCO₃NP from the cockle shell is laborious, on the other hand, this method is more effective and less expensive than the use of a high-pressure homogenizer technique via a microemulsion system to synthesize CSCaCO₃NP by Kamba et al. [12].

The method followed for loading the drugs is facile and efficient. Drug-loading and drug-encapsulation percentages are very vital parameters in the synthesis of nanomedicines [13]. The Loading content (%) and encapsulation efficiency (%) of the three groups are tabulated (Table 1). Loading content (%) and encapsulation efficiency (%) for GEF and PTXL for GEF1-PTXL was 1.98 ± 0.11, 50.01 ± 2.18 and 0.92 ± 0.01, 45.60 ± 0.32. GEF1-PTXL is a suitable group, since it possesses higher encapsulation efficiency and the highest loading content of GEF and PTXL, respectively. The loading content of drugs into the nanoparticles is also governed by the surface area available on the CSCaCO₃ nanoparticles. Another important factor is the water solubility of the drugs employed [14]. The lower loading content of less than 10% is usually observed for inorganic carrier-based nanoparticles. A similar result is reflected in the loading content obtained in the current experiment [13]. In addition to the above-stated facts, other points to be taken into account for lower values are the physical and electrostatic interactions during the drug loading process. The CSCaCO₃ NP is negatively charged and so, will contribute to electrostatic repulsion leading to lower loading content. The obtained encapsulation efficiency can be compared to the data obtained by Ibiyeye et al. where CSCaCO₃NP was loaded with Thymoquinone/Doxorubicin, and the obtained values follow a similar trend [15]. The observed trend in the encapsulation efficiency (%) for CSCaCO₃NP was similar to the data obtained for single drug loading like Doxorubicin [3,5,7] and Docetaxel [5] loaded onto the same type of cockle shell derived CaCO₃NP, but the loading content is lower in this study, when compared to other research.

<table>
<thead>
<tr>
<th>Groups</th>
<th>Drugs</th>
<th>CSCaCO₃NP (µg)</th>
<th>Loading Content (%)</th>
<th>Encapsulation Efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEF1-PTXL</td>
<td>GEF (400µg)</td>
<td>10,000</td>
<td>1.98 ± 0.11</td>
<td>50.01 ± 2.18</td>
</tr>
<tr>
<td></td>
<td>PTXL (200 µg)</td>
<td></td>
<td>0.92 ± 0.01</td>
<td>45.60 ± 0.32</td>
</tr>
<tr>
<td>GEF2-PTXL</td>
<td>GEF (400µg)</td>
<td>15,000</td>
<td>1.14 ± 0.23</td>
<td>42.95 ± 8.98</td>
</tr>
<tr>
<td></td>
<td>PTXL (200 µg)</td>
<td></td>
<td>0.50 ± 0.08</td>
<td>37.45 ± 5.73</td>
</tr>
<tr>
<td>GEF3-PTXL</td>
<td>GEF (400µg)</td>
<td>20,000</td>
<td>1.12 ± 0.19</td>
<td>45.03 ± 10.37</td>
</tr>
<tr>
<td></td>
<td>PTXL (200 µg)</td>
<td></td>
<td>0.44 ± 0.08</td>
<td>43.93 ± 7.25</td>
</tr>
</tbody>
</table>

1 Three groups were assigned each with a different concentration of CSCaCO₃NP. Each of the experiment were conducted in triplicate and the data is expressed as mean ± SD (%).
The TEM micrographs of CSCaCO\(_3\)NP demonstrated a spherical shape and a size of 52.36 ± 15.82 nm (Figure 1a). The FESEM micrographs of CSCaCO\(_3\)NP revealed particles of 63.96 ± 22.3nm and GEF-PTXL- CSCaCO\(_3\)NP exhibited spherical shape and relatively uniform size of 87.20 ± 26.66 nm. (Figure 1b). This size is comparable to the results of Ibiyeye et al. [15]. The zeta potential of the CSCaCO\(_3\)NP was 17 ± 1.15 (mV) and GEF-PTXL- CSCaCO\(_3\)NP was 10.30 ± 1.7 (mV) (Figure 1c). The negative Zeta potential is in concurrence with other works [4,5]. The Hydrodynamic diameters of CSCaCO\(_3\)NP and GEF-PTXL- CSCaCO\(_3\)NP are 179 ± 10.9 (nm) and 274 ± 23.22 (nm), respectively (Figure 1c), which was larger than the Doxorubicin loaded CSCaCO\(_3\)NP obtained by Danmaigoro et al. [16] and Hamidu et al. [17]. Overestimation of the hydrodynamic diameter from DLS by 17 to 31%, when compared with the values from the electron micrographs[4,16,17]. This type of discrepancy has been observed because the methods used to measure the size is different, another vital point to be noted is that the dispersant used for the DLS measurement also plays a role in altering the values [18], the aggregation or opsonization of particles in the deionized water medium [19] as compared to TEM, where the particles were measured in a dry state.

![Figure 1](image1.png)

Figure 1. Characterization of CSCaCO\(_3\)NP and GEF-PTXL- CSCaCO\(_3\)NP (a) TEM of about 50nm particles show the spherical shape and relatively even size; (b) FESEM of GEF-PTXL- CSCaCO\(_3\)NP particles with 87nm on average and relatively spherical shape and (c) Zeta Potential and the Particle size distribution for CSCaCO\(_3\)NP (a & b) and GEF-PTXL- CSCaCO\(_3\)NP (c & d), respectively(d) PXRD patterns demonstrates aragonite crystalline phase in both the nanoparticles and labelled are the miller indices planes of the synthesized crystals; (e) FT-IR pattern of CSCaCO\(_3\)NP and formation of new peaks (green box) in the spectra of GEF-PTXL- CSCaCO\(_3\)NP.

PXRD patterns obtained from the powder diffraction of CSCaCO\(_3\)NP and GEF-PTXL- CSCaCO\(_3\)NP indicate that both the nanoparticles are possessing aragonite crystalline signature
(Figure 1d) showed the highest score with that of the aragonite phase of CaCO₃. This result is in agreement with the results obtained by other researchers where various other drugs like Vancomycin [20], Doxorubicin [16], Thymoquinone, and Doxorubicin [15] that have been loaded onto the CSCaCO₃NP. FT-IR spectra is a result of the absorption of EM radiations at frequencies that correlate to the vibration of a specific set of chemical bonds form within a molecule [21]. The FT-IR spectra of CSCaCO₃NP demonstrated vibrational band assignments at 1445, 1084, 856, and 714 cm⁻¹ (Figure 1e). The largest and strongest band exhibited at 1445 cm⁻¹ is attributed to the C–O stretching band. Other peaks at 1084 and 856 cm⁻¹ are attributed to CO₂ – in the molecular structure of the calcium carbonate. The derived spectra are similar to the spectra obtained by other researchers for cockle shell derived CaCO₃NP [16]. The spectral absorption peaks of GEF-PTXL-CSCaCO₃NP demonstrated new vibrational band assignments at 952.84 (cyclohexane), 1024.20 (C–F stretch), 2918.30 (C–H stretching) and 3433.22 (aromatic amine and OH stretch) cm⁻¹ [22,23] (Figure 1e). The largest and strongest band exhibited by CSCaCO₃NP at 1445 cm⁻¹ remained unaltered in spectra of GEF-PTXL-CSCaCO₃NP indicating that the alkyl group is unaffected. All these changes indicate that the drugs are adsorbed onto the nanoparticles.

From the Nitrogen adsorption and desorption experiments, the isotherm obtained for CSCaCO₃NP and the GEF-PTXL-CSCaCO₃NP is a Type IV isotherm, based on the classification of BET system. This type of isotherm is characterized by the “hysteresis loop,” where, capillary condensation occurs, with an initial loop formed by the mono-multi layer adsorption, a 2nd loop by the desorption of gases. This type of isotherm indicates that the nanoparticles are mesoporous [24,25]. The H1 hysteresis loop is formed when the adsorption and desorption curves are almost vertical and approximately parallel to each other and it signifies the presence of pores with cylindrical geometry and uniform pore size. The surface area of the synthesized CSCaCO₃NP and GEF-PTXL-CSCaCO₃NP are 10.68 ± 0.22 and 9.88 ± 0.24 (cm²/g), which is higher than the surface area obtained by Danmaigoro et al. [16] and Hammadi et al. [5]. The BJH mean pore size diameter of the synthesized CSCaCO₃NP and GEF-PTXL-CSCaCO₃NP was 5.21 and 5.23 (nm) which is slightly higher than the pore size obtained by Danmaigoro et al. [16].

4. Conclusions

In conclusion, the simple cockle shells, a by-product of the food industry, was converted into a potential nanoparticulate drug carrier. The cockle shell derived CaCO₃NP is purely aragonite, porous, and contains a large surface area compared to the particle size. Specifically, in this work, we have proved that cockle shell derived CaCO₃NP can be loaded with chemotherapeutic drugs. After loaded with Gefitinib and Paclitaxel, the physicochemical characterization data has revealed that the drugs have successfully loaded onto the nanoparticles and the aragonite phase of the cockle shell derived CaCO₃NP has remained unaltered.

Acknowledgments: This research was funded by MINISTRY OF HIGHER EDUCATION MALAYSIA, under the Fundamental Research Grant Scheme (FRGS/1/2019/SKK15/UPM/02/4). The views and opinion presented by the authors do not reflect those of the Fundamental research grant scheme under Government of Malaysia.

References

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).