IOCN
2020

2nd International Online-15-30 NOVEMBER 2020 | ONLINE

Synthesis and characterization of Gefitinib and Paclitaxel dual drug loaded Cockle shell (*Anadara granosa*) derived Calcium carbonate nanoparticles

Chemmalar S, M.V.Sc PhD Scholar in Nanomedicine, Institute of Bioscience, University Putra Malaysia, Malaysia

IOCN 2020

Authors

Chemmalar S, Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; gs52461@student.upm.edu.my **Intan Shameha Abdul Razak**, Department of Veterinary Pre-Clinical Science, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; [intanshameha@upm.edu.my,](mailto:intanshameha@upm.edu.my) **Che Abdullah Che Azurahanim**, Institute of Bioscience and Biophysics Laboratory, Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; azurahanim@upm.edu.my **Nor Asma Adbul Razak**, Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra

Malaysia, 43400 UPM Serdang, Selangor, Malaysia; norasmarazak@upm.edu.my

Loqman Haji Mohamad Yusof, Department of Companion Animal Medicine and Surgery, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; loqman@upm.edu.my and

Md Zuki bin Abu Bakar, Laboratory of Molecular Biomedicine, Institute of Bioscience, and Department of Veterinary Pre-Clinical Science, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; zuki@upm.edu.my

Introduction Materials and methods Results and discussion **Conclusions** Acknowledgement References

 \bigodot

\lceil Introduction \rceil

Distribution of blood cockle shells -

Indian

Ocean

Indian

Ocean

(FAO, n.d.)

Atlantic

Ocean

Sustainable source of $CaCO₃$

Aragonite polymorphbiocompatible, safe, pure (Kamba *et al*., 2013; Hammadi *et al*., 2017; Danmaigoro *et al*., 2017)

pH dependent drug release (Hammadi *et al*., 2017; Danmaigoro *et al*., 2017)

Cockle shell derived aragonite calcium carbonate nanoparticles (CSCaCO₃NP)

For delivering hormonal agents (Jaji *et al*., 2017)

For delivering chemotherapeutic agents (Danmaigoro *et al*., 2017; Ibiyeye et al., 2020)

To deliver anti-bacterial agents (Saidykhan *et al*., 2016; Idris et al., 2019)

Iressa (Gefitinib, ZD 1839) $C_{22}H_{24}CIFN_4O_3$

IOCN

2020

Small molecule EGFR-TKI Reversible competitive inhibitor of EGFR tyrosine kinase (Ward *et al*., 1994) 447 kD FDA approved -NSCL

drugs

Paclitaxel $C_{47}H_{51}N O_{14}$

Cytotoxic drug Promotor of tubulin polymerization and stabilizes microtubules to depolymerization (Nikolic *et al*., 2011) 853.89kD

FDA approved -* Node positive breast cancer + adjuvant therapy, Metastatic BC

-Kaposi sarcoma -NSCL NO approved **No approved No approved**

-Ovarian cancer

Size, PDI, shape, Surface chemistry,

Drug loading and encapsulation efficiency

Chemical composition, bonding and in vitro drug release kinetics

(Hosokawa et al., 2007)

Materials

- GEF and PTXL (Gold Biotechnology, St. Louis, MO)
- DMSO (Fisher Scientific U.K)
- Tween 80 (R & M marketing, U K)
- Cockle shells (local market in Serdang, Malaysia)
- Deionized water Milli-Q integral Water Purification

System(Millipore Sigma, USA)

- Double beamUV-VIS spectrophotometer(Shimadzu 1650PC)
- High speed centrifuge (Optima XPN, Beckman Coulter instruments Inc., CA, USA)
- Magnetic stirrer (Dhaihan WiseStir® Systematic Multi-Hotplate

Stirrer, South Korea)

2020

- Hot air oven (Memmert UM500, GmbH Co,Germany)
- Programmable ball miller (BML-6", Diahan scientific®, Korea)
- Transmission Electron Microscope(HRTEM, JOEL JEM-2100F, Japan)
- Field emission scanning electron microscope (Nova Nanosem 230, Japan)
- Carbon-coated copper grid (Sigma- Aldrich, St. Louis, MO, USA)
- Zetasizer Nano ZS (Ver. 7.2; Malvern Instruments Ltd., Malvern, UK)
- XRD (Shimadzu XRD- 6000 powder diffractometer)
- FT-IR (Model spectrum 100; Perkin Elmer, USA)
- Micromeritics (Tristar II Plus, USA).

Methods

A. Synthesis of CSCaCO3 NP and GEF-PTXL- CSCaCO3 NP

1. Top down synthesis of CSCaCO3 nanoparticles from cockle shells (*Anadara granosa***)**

By nanomaterials

IOCN 2020

2. Synthesis of GEF-CSCaCO3, PTXL-CSCaCO3 and GEF-PTXL-CSCaCO3 nanoparticles

3. Loading content and encapsulation efficiency of GEF-PTXL-CSCaCO3 nanoparticles

The encapsulation efficiency (EE%) and loading content (LC%) was determined as the average measurement of 3 independent measurements(Fu *et al*., 2017).

Encapsulation efficiency (%) =
$$
\frac{Wt-Wf}{Wt} \times 100
$$
 --- (1)
\nWhere,
\nWt is the total weight of drug fed
\nWf is the weight of non-encapsulated free drug.
\nloading content (%) = $\frac{Wt-Wf}{Wnp} \times 100$ --- (2)
\nWhere,
\nWt is the total weight of flux of ed.

 Wt is the total weight of drug fed Wf is the weight of non-encapsulated free drug Wnp is the weight of the nanoparticles

B. Physicochemical characterization of CSCaCO3 NP and GEF-PTXL- CSCaCO3 NP

1. Transmission Electron Microscopy (TEM) and Field emission Scanning Electron Microscopy (FESEM) of CSCaCO₃NP and GEF-PTXL- $CSCaCO₃NP$

- 2. Electro-kinetic zeta potential, hydrodynamic diameter, and Poly-dispersity Index (PDI) of $CSCaCO₃NP$ and GEF-PTXL-CSCaCO3NP
- 3. Powder X- ray powder Diffraction (PXRD) of CSCaCO₃NP and GEF-PTXL- CSCaCO₃NP
- 4. Fourier-transform infrared spectroscopy (FT-IR) of $CSCaCO₃NP$ and GEF-PTXL-CSCaCO₃NP
- 5. Specific Surface area and Pore Size of $CSCaCO₃NP$ and GEF-PTXL- $CSCaCO₃NP$

Results & Discussion

1. Loading content and encapsulation efficiency of GEF-PTXL-CSCaCO3 nanoparticles

Table 1: Loading content (%) and Encapsulation efficiency (%) of various groups of GEF-PTXL- CSCaCO₃NP

The loading efficiency of drugs into the nanoparticles is also governed by the surface area availability on the CSCaCO₃ nanoparticles and water solubility of the drugs employed (Govender *et al*., 2000). The lower loading content of less than 10% is usually observed for inorganic carrier based nanoparticles. Similar result is reflected in the loading content obtained in the current experiment (Shen *et al*., 2017).

B. Physicochemical Characterization

1. TEM and FESEM of CSCaCO3NP and GEF-PTXL- CSCaCO3NP

Figure 1: Transmission Electron micrograph of $CSCaCO₃NP$ @50nm

Figure 2: Size distribution chart of CSCaCO₃NP

Figure 3: Scanning Electron micrograph of GEF-PTXL- CSCaCO_3NP @ 87nm

Similar results were obtained by Ibiyeye *et al.*, where CSCaCO_3NP had similar average diameters of 53.65 \pm 10.29 nm and $CSCaCO₃NP$ loaded with Thymoquinone /Doxorubicin, had an average diameter of 60.49 \pm 11.36 nm (Ibiyeye *et al.*, 2020).

2. Electro-kinetic zeta potential, hydrodynamic diameter, and Poly-dispersity Index (PDI)

Figure 4: DLS results showing the apparent Zeta Potential and the Particle size distribution in deionized water and PBS with 0.2%Tween 80 for $CSCaCO₃NP$ (a & b) and GEF-PTXL- $CSCaCO₃NP$ (c & d), respectively.

The negative Zeta potential is in concurrence with the results from other researchers (Danmaigoro *et al*., 2017; Idris *et al*., 2019; Ibiyeye *et al*., 2020).

The hydrodynamic diameter of both of the nanoparticles was larger than the Doxorubicin loaded $CSCaCO₃NP$ obtained by other researchers (Danmaigoro *et al*.,2017 and Hamidu *et al*., 2019).

3. Powder X- ray Diffraction (PXRD)

Raw data of the PXRD, when analyzed in X'Pert High score Plus software, showed the highest score for aragonite phase of $CaCO₃$.

This result is in agreement with the results obtained by other researchers where various other drugs like Vancomycin (Saidykhan *et al*.,2017), Doxorubicin (Danmaigoro *et al*.,2017), Thymoquinone, and Doxorubicin (Ibiyeye *et al*., 2020) that have been loaded onto the CSCaCO₃NP.

Figure5: PXRD patterns demonstrates aragonite crystalline phase in both the nanoparticles and labelled are the miller indices planes of the synthesized crystals

4. Fourier-transform infrared spectroscopy (FT-IR)

Figure 6:FT-IR pattern of CSCaCO₃NP and formation of new peaks (green box) in the spectra of GEF-PTXL-CSCaCO3NP

CSCaCO3NP :

1445, 1084, 856, and 714 cm $^{-1}$.

The largest and strongest band-1445 $cm⁻¹$ C-O stretching band. The other peaks at 1084 and 856 cm⁻¹ are attributed to $\mathsf{CO_3}^{2-}$ in the molecular structure of the calcium carbonate. The derived spectra are similar to the spectra obtained by other researchers for cockle shell derived CaCO₃NP (Hammadi *et al*., 2017; Danmaigoro *et al*.,2017 and Fu *et al*., 2017).

GEF-PTXL-CSCaCO3 NP;

New vibrational band assignments at 952.84 (cyclohexane), 1024.20 (C-F stretch), 2918.30 (C-H stretching) and 3435.22 (aromatic amine and OH⁻ stretch) cm⁻¹ (Renuga Devi and Gayathri, 2010 and Talari *et al*., 2017)

5. Specific Surface area and Pore Size

Figure 7:BET nitrogen adsorption isotherms revealing the characteristic isotherms of plain $CSCaCO₃NP$ and GEF-PTXL-CSCaCO₃NP

BET Brunauer-Emmett-Teller Type IV isotherm+ "hysteresis loop H1" initial loop- mono-multi layer adsorption, 2nd loop- desorption of gases (Sing, 1982; Thommes *et al*., 2015)

According to Hammadi *et al*., there is increase in surface area have been observed for the drug loaded Cockle shell derived CaCO₃NP.

Conclusions

$CSCaCO₃NP$

GEF-PTXL-CSCaCO₃NP

- The top down method of synthesis of Cockle shell derived (CSCaCO₃NP) resulted in nanoparticles of average size of 52.36 ± 15.82 nm and spherical shaped nanoparticles.
- -17 ± 1.15 (mV) of zeta potential, with PDI of 0.3 is \cdot indicating stability
- XRD data revealed that the $CSCaCO₃NP$ is purely aragonite crystals
- FTIR analysis shows that the synthesized $CSCaCO₃NP$ possessed the characteristic spectra of calcium carbonate compound.
- The BET pore size of 5.21 nm, with good surface area of 10.68 cm $3/$ g makes it a good candidate as a drug carrier.
- The Loading content (%) and encapsulation efficiency (%) for GEF and PTXL in dual drug-loaded NP (GEF-PTXL-CSCaCO₃NP) was 1.98 ± 0.11 , 50.01 ± 2.18 and 0.92 ± 0.01 , 45.60 ± 0.32 .
- The synthesized GEF-PTXL-CSCaCO₃NP had an average size of 87.20 ± 26.66 nm.
- -10.30 ± 1.7 (mV) of zeta potential and PDI of 0.3 is indicating stability
- XRD data revealed that the GEF-PTXL-CSCaCO₃NP belong to the aragonite signature even after loading of the drugs
- FTIR analysis shows that the certain functional groups of the drugs are found in the loaded GEF-PTXL-CSCaCO₃NP.
- The BET pore size of 5.23 nm, with surface area of 9.88 $cm³/g$, reduction in surface area could be due to the loaded drugs on the surface and pores of the $CSCaCO₃NP$

References

- 1. Din,U, F,; Aman,W,; Ullah,I,; Qureshi, O.S,; Mustapha,O,; Shafiquw, S,; Zeb, A. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. *Int. J. Nanomedicine*. **2017**, 12, 7291–7309.
- 2. FAO. Aquatic species Distribution Map viewer. Fish. Aquac. Dep. Available from: http://www.fao.org/figis/geoserver/factsheets/species.html%0A.
- 3. Kamba,A.S,; Ismail,M,; Tengku Ibrahim,T.A,; Ibrahim, T,; Zakaria, Z.A.B.A. pH-Sensitive, Biobased Calcium Carbonate Aragonite Nanocrystal as a Novel Anticancer Delivery System. Biomed Res. Int. **2013,**2013,1–10.
- 4. Hammadi, N.I,; Abba,Y,; Hezmee,M.N.M,; Razak,I.S.A,; Jaji,A.Z,; Isa,T,; Mahmood, S.K,; Zakaria, M. Z. A. B. Formulation of a Sustained Release Docetaxel Loaded Cockle Shell-Derived Calcium Carbonate Nanoparticles against Breast Cancer. *Pharm. Res.* **2017**,34,1193–1203.
- 5. Danmaigoro,A,; Selvarajah,G.T,; Noor MHM, Mahmud, R,; Zakaria, M. Z. A. B. Development of Cockleshell (Anadara granosa) Derived CaCO₃Nanoparticle for Doxorubicin Delivery. *J. Comput. Theor. Nanosci.* **2017**,14,5074–5086
- 6. Jaji,A.Z,; Zakaria,Z,; Mahmud,R,; Loqman, M. Y,; Hezmee, M.N.M,; Isa, T,; Fu,W,; Hammadi, N. I. Synthesis, characterization, and cytocompatibility of potential cockle shell aragonite nanocrystals forosteoporosistherapy and hormonal delivery.*Nanotechnol. Sci. Appl.* **2017**,10,23–33.
- 7. Ibiyeye, K.M,; Zakaria, M. Z. A. B,; Nurdin, N,; Mokrish, A. Combine Drug Delivery of Thymoquinone-Doxorubicin by Cockle Shell derived pH-sensitive Aragonite CaCO3 Nanoparticles. Nanosci. *Nanotechnology-Asia.* **2020**,10,518–533.
- 8. Saidykhan,L,; Rukayadi,Y,; Umar Kura,A,; Yazan,L.S,; Zakaria, M. Z. A. B Development of nanoantibiotic delivery system using cockle shell-derived aragonite nanoparticles for treatment of osteomyelitis. Int.J.Nanomedicine. **2016**,11,661.
- 9. Idris,S.B,; Kadir,A.A,; Jesse,F.F.A,; Ramanoon, S.Z,; Basit,M.A,; Zakaria, Z.A,; Zakaria, M.Z.A.B. Synthesis, characterization, and in vitro release of oxytetracycline loaded in pH-responsive CaCO3 nanoparticles.*J. Appl. Pharm. Sci.* **2019**,9,19–27.
- 10. Ward,W.H.J,; Cook,P.N,; Slater,A.M,;Davies, D. H,; Holdgate,G. A,;Green, L. R. Epidermal growth factor receptor tyrosine kinase. *Biochem. Pharmacol.* **1994**,48,659–666.
- 11. Nikolic ,V.D,; Savic,I.M,; Savic,I.M,; Nikolic, L.B,; Stankovic, M.Z,; Marinkovic, V.D. Paclitaxel as an anticancer agent: isolation, activity,synthesis and stability.*Open Med*. **2011**, 6, 527–536.
- 12. Hosokawa, M,; Nogi, K,; Naito, M,; Yokoyama, T. Basic properties and measuring methods of nanoparticles. In *Nanoparticle Technology Handbook*, 1st ed.; Hosokawa, M., Nogi, K., Naito, M., Yokoyama, T.; Elsevier: Elsevier Netherlands, 2007; pp. 1-166.
- 13. Fu,W,; Mohd Noor,M.H,; Yusof,L.M,; Ibrahim, T. A. T,; Keong, Y. S,; Jaji, A. Z,; Zakaria, M. Z. A. B. In vitro evaluation of a novel pH sensitive drug delivery system based cockle shell-derived aragonite nanoparticles against osteosarcoma. *J. Exp. Nanosci.* **2017,**8080,1–22.
- 14. Govender,T,; Riley,T,; Ehtezazi,T,;Garnett, M. C;, Stolnik, S;, Illum, L,; Davis, S. S.Defining the drug incorporation properties of PLA-PEG nanoparticles. *Int.J. Pharm.* **2000**,199,95–110.
- 15. Shen.S,;Wu,Y,; Liu,Y,; Wu, D. High drug-loading nanomedicines:progress, currentstatus, and prospects. *Int. J. Nanomedicine.* **2017**,12,4085–4109.
- 16. Hamidu,A,; Mokrish,A,; Mansor,R,; Razak,I.S.A,; Danmaigiro,A,; Jaji,A.Z,; Zakaria, M. Z. A. B. Modified methods of nanoparticles synthesis in pH-sensitive nano-carriers production for doxorubicin delivery nMCF-7 breast cancer cell line. *Int.J. Nanomedicine.* **2019**,14,3615–3627.
- 17. Renuga Devi,T.S,;Gayathri,S. FTIR And FT-Raman spectral analysis of Paclitaxel drugs. *Int.J. Pharm. Sci. Rev. Res.* **2010**, 2, 106–110.
- 18. Talari,A.C.S,; Martinez,M.A.G,; Movasaghi,Z,; Rehman, S,; Ur Rehman, I.Advances in Fourier transform infrared (FTIR) spectroscopy of biological tissues. *Appl. Spectrosc. Rev*. **2017**,52,456–506.
- 19. Thommes,M,; Kaneko,K,; Neimark,A.V,; Oliver, J.P,; Rodriguez-Reinoso,F,; Rouquerol,J,; Sing, K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). *Pure Appl. Chem.* **2015**,87,1051–1069.
- 20. Sing, K.S.W. Reporting physiosorption data for gas/solid systems. *Pure Appl. Chem.* **1982**, 2201–2218

Acknowledgement

This research was funded by MINISTRY OF HIGHER EDUCATION MALAYSIA, under the Fundamental Research Grant Scheme (FRGS/1/2019/SKK15/UPM/02/4), Project grant code: 04-01-19-2097FR

Thank you.

