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Abstract: We report the characterization of back-gated field-effect transistors fabricated using 

platinum diselenide (PtSe2) ultrathin films as channel. We perform a detailed study of the electrical 

conduction as well as of the photoconductivity. From the gate modulation of the channel current 

we obtain the signature of p-type semiconducting conduction with carrier mobility of about 30 cm2 

V−1 s−1. More interestingly, PtSe2 devices exposed to light, either in air and in vacuum, exhibit a 

negative photoconductivity, that we explain by a photogating effect due to charge trapping in the 

gate dielectric and light-induced desorption of adsorbates.  
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1. Introduction 

Two-dimensional (2D) transition-metal dichalcogenides (TMDs) have been widely investigated 

for their interesting properties and applications [1–4]. More recently, TMDs based on group-10 

transition metals such as PdSe2 ad PtSe2 have attracted growing attention [5–7]. These materials 

crystallize in an octahedral lattice structure where the transition metal atoms are coordinated with 

six chalcogens. The presence of d-electrons in the group-10 transition metals gives rise to additional 

semiconductor bands making the electrical and optical properties largely tunable by the number of 

layers [8]. Monolayer PtSe2 has an indirect bandgap of ~1.2 eV, which is expected to reduce to 0.3 eV 

for the bilayer and vanish for the bulk [9]. 

The bandgap of PtSe2  covers the spectral range that is important for telecommunications and 

solar energy harvesting [10], and the carrier mobility (theoretically predicted up to 4000 cm2 V−1 s−1 

[11] and experimentally found to be around 200 cm2 V−1 s−1  [12]), competitive with black 

phosphorus, can enable fast electronic devices [13].  

In this paper, we study the electrical properties of field-effect transistor realized using 3 nm-

thick PtSe2 film. We report semiconducting p-type conduction, and relatively high hole mobility.  

Interestingly, we report photoconduction measurements that demonstrates that the PtSe2 

devices show negative photoconductivity, which we explain by a photogating effect due to charge 

trapping in the gate dielectric and light-induced desorption of adsorbates. 
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2. Experimental Section 

PtSe2 film, obtained by direct selenization of 0.7 nm thick Pt film (fabrication details in ref. [14]), 

is transferred on SiO2(85 nm)/p-Si substrate and it is etched by SF6-based inductively coupled plasma 

process. The patterned PtSe2 (6 layers thick) is then contacted by Ni(20nm)/Au(150 nm) metal leads. 

A schematic of the PtSe2 FET is shown in Figure 1a. 

 

(a) 
(b) 

Figure 1. (a) Schematic of PtSe2  back gated FET and mesurements configuration; (b) Raman 

characterization of PtSe2 sheet, showing Eg peak at 176 cm−1 and A1g peak at 205 cm−1. Inset: SEM 

image of the device. 

In Figure 1b, we show the Raman spectrum for the PtSe2sample, in which we observe the Eg 

peak at 76 cm−1 and the A1g peak at 205 cm−1 that give indication of multilayer PtSe2 [15]. In the 

inset, an SEM image of the device is shown. The transistors were characterized inside a cryogenic 

Janis ST-500 Probe Station, working at variable temperature and pressure, by connecting the probes 

to a Keytley 4200 source-measurement unit. The photoconductivity measurements were performed 

by using a super-continuous white light source (NKT Photonics, Super Compact) with wavelength 

ranging from 450 nm to 2400 nm and 100 mW/cm2 maximum intensity. 

3. Results and Discussion 

3.1. Electrical Characterization 

We initially applied two- and a four-probe configuration to measure the channel Ids − Vds 

characteristics. Figure 2a shows that the two techniques yield the same result, indicating that the 

device has good ohmic contacts with low resistance. Therefore, we decided to use the simplest two-

probe setup for further electrical characterization.  

Figure 2b, shows an increasing conductance G when the temperature T is raised from 100 K to 

400 K revealing the semiconducting nature of the PtSe2  nanosheet. The G − Vgs  transfer 

characteristics, where G = Ids/Vds  is the channel conductance at fixed drain voltage, reported in 

Figure 2b confirm the semiconducting nature of the channel and reveals that it has a p-type behavior, 

as the channel conductance decreases for positively increasing gate voltage. The p-type doping of the 

PtSe2 channel can be attributed to O2 adsorbates [6,16–18] as well as to Pt vacancies [19]. Furthermore, 

the use of Ni as the contact material facilitates hole injection as the Ni Fermi level aligns to the top of 

the valence band of PtSe2.  

We evaluated the field effect mobility as μ =
L

WCoxVds

dIds

dVgs
  (Ids and Vds are the drain current and 

voltage, Cox = 3.11 nFcm−2 is the SiO2 capacitance per area, L and W are the channel length and 

width). The value of 31 cm2 V−1 s−1 at room temperature is higher than that measured in differently 
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fabricated PtSe2 devices [5,12] or in similar devices with other TMDs such as PdSe2, MoS2 or WSe2 

[16,20,21]. 

 

(a) 

 

(b) 

Figure 2. (a)    −     output curves measured in two- and four-probe configurations. (b) 𝐺 −     

transfer curve showing p-type behaviour and field effect mobility of 31 cm2 V1 s−1. 

3.2. Photoresponse 

The effect of light on PtSe2  nanosheets was investigated by illuminating the device with a 

supercontinuous white laser (450–2400 nm), with light pulses of given time duration and intensity. 

Figure 3a,b show the device channel current under fixed bias conditions for switching light at the 

intensity of 30 mW/cm2, in air at room pressure and at 1 mbar, respectively.  

 

(a) 

 

(b) 

Figure 3. (a)     drain current subjected to switching light pulses (30 mW/cm2), monitored in air at 

room pressure. (b)     drain current subjected to switching light pulses (30 mW/cm2), monitored in 

air at 10−3 mbar pressure. 

After a sequence of 12 pulses, 2 min long, the laser is switched off and the current is monitored 

in dark. Surprisingly, each laser pulse provokes a reduction of the current. Such behavior, that is 

referred to as negative photoconductivity, is opposite to the current increase normally observed 

under light as an effect of electron-hole (e-h) pair photo-generation [22–24]. We point out that current 

reduction is a reversible phenomenon as the device returns slowly to the pre-irradiation state when 

the light source is turned off, with recovery significantly faster in air at room pressure.  

The negative photoconductivity could be caused by a photogating effect due to charge trapping 

in the SiO2 layer and light-induced oxygen desorption [25,26]. 

Holes photogenerated in the Si substrate and in the PtSe2 channel can be trapped in the SiO2 

gate dielectric and act as a positive gate that lowers the channel conductance of the p-type transistor. 

Simultaneously, electrons in O2 (and perhaps H2O) molecules adsorbed over the PtSe2 channel can 
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be excited by light into the channel. The neutralized O2 molecules can be easily desorbed causing a 

decrease of the channel doping, hence of its conductivity. Both charge trapping and O2 desorption 

decrease the current by a mechanism which is reversible with characteristic time depending on hole 

detrapping and O2 adsortpion. Obviously oxygen adsorption is facilitated at room pressure, thus 

explaining the faster recovery in air at room pressure.  

4. Conclusions 

In conclusion, we investigated the electrical transport in PtSe2 layers used as the channel of 

back gated field effect transistors. The transistor transfer characteristic indicated p-type conduction 

with mobility up to ∼ 40 cm2 V−1 s−1 at room temperature. Exposure to light showed a dominant 

photogating effect, due to charge storage in the SiO2 dielectric and light induced desorption of 

adsorbates that cause a negative photoconductivity.  
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