IJSC

Non-target GC-MS analysis for the identification of semi-volatile compounds in polymeric coatings intended to come in contact with food

Patricia Vázquez Loureiro¹, Antía Lestido Cardama¹, Raquel Sendón¹, Juana Bustos², M^a Teresa Nieto², Perfecto Paseiro Losada¹ and Ana

Rodriguez-Bernaldo de Quirós¹

¹Department of Analytical Chemistry, Nutrition and Food Science, Faculty of Pharmacy, University of Santiago de Compostela (Spain)

²National Food Center, Spanish Agency for Food Safety and Nutrition, Spain

Polymeric coatings are used in the food contact surface of metal cans to protect the food from corrosion. Migration of components from the food contact material to the food is a matter of concern from the food safety point of view, special attention has been paid to low molecular weight compounds and particularly to unknown compounds. Its identification is a current challenge in the food packaging field [1].

This study was focused on the identification of semi-volatile low molecular weight compounds present in polymeric coatings for metal food and beverage cans.

Different solvents were tried with the aim to extract compounds with different polarity present in the coating of metal cans.

Figure 1. Chromatograms of the sample extraction with different solvents.

Tr/min	Compuesto	CAS	SI	RSI
11.37	2-oxepanone	502-44-3	729	862
12.34	alpha-terpineol	98-55-5	902	936
14.20	isobenzofuran-1,3-dione	85-44-9	918	933
15.58	diol			
16.93	(+)-Ledene	21747-46-6	893	927
18.08	diethyl phthalate	84-66-2	929	938
19.28	dodecalactona	2305-05-7	904	954
20.72	phthalate	84-78-6	714	758
20.99	1-Phenyl-1,2-propanediona	579-07-7	855	922
21.73	2-Isobutyl-5-propylthiophene	4861-63-6	591	643
21.99	oxaspiro			
22.33	phthalate			
23.30	phthalate			
27.19	α-Methyl-δ-oxo-2-phenyl-1,3-dioxolane-2- heptanenitrile	58422-90-5	777	898
27.42	hexa(methoxymethyl)melamine	68002-20-0	857	874

Carrier gas now (ne) (inc/init)	
Ramp Temperature (^o C)	40-300
Full scan (m/z)	35-500
Mode of injection	splitless

NL: 4.05E8 TIC MS 5a 75 70-32.45 65 60 55 50 45 40

Table 2. Compounds identified by GCMS analysis after extraction with MeOH as solvent.

This research was funded by the Ministerio de Ciencia, Innovación y Universidades, by Fondo Europeo de Desarrollo Regional (FEDER), and by Agencia Estatal de Investigación Ref. No. PGC2018-094518-B-I00 "MIGRACOATING" (MINECO/FEDER, UE).

Figure 2. Chromatogram of extraction of sample 5 with methanol and extracts of the analyzed samples.

The preliminary assays showed that esters and alkenes were among the most abundant compounds identified. Some examples of compounds can be seen in table 2.

References:

35

[1] EFSA Journal, 6(7):21r, 1-41.

