

Recovery of phenolic compounds from edible algae using high hydrostatic pressure: an optimization approach

<u>A.G. Pereira¹</u>, M. Carpena¹, P. García-Oliveira^{1,2}, C. Jiménez-López^{1,2}, C. Lourenço-Lopes¹, A. Carreira-Casais ¹, J. Echave¹, Paz Otero ^{1,3}, M. Fraga^{1,2}, P. Gullón¹, L. Barros², I.C.F.R. Ferreira², M.A. Prieto^{1*} and J. Simal-Gandara^{1*}

<u>SPAIN</u>

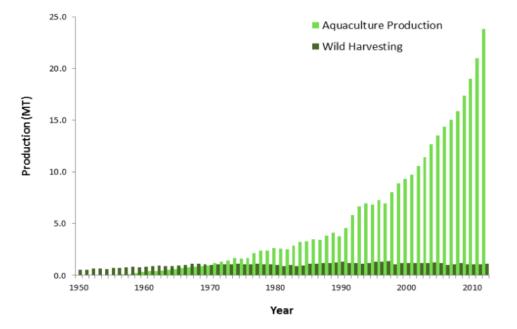
¹Nutrition and Bromatology Group, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E32004 Ourense, Spain.

PORTUGAL

²Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal;

Introduction – Seaweed industry

Posibilities of seaweed


ALGAMAR®

Valorisation of seaweeds: obtaining extracts with pharmaceutical, cosmetic or food interest.

Introduction – Seaweed industry

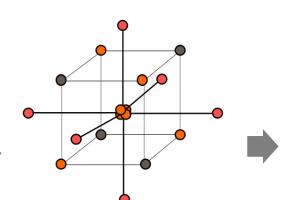
Local common name	Scientific name	Uses
		broths, snacks, with
Kombu	Laminaria spp.	legumes
		with vegetables, cereals,
Kombu real	Saccharina latissima	fish or toast
		with vegetables, cereals,
Espagueti de mar	Himanthalia elongata	fish or fried
Wakame	Undaria ninnatifida	raw or boiled
wakame	Undaria pinnatifida	
		stews, vegetables, rice or
Nori	Porphyra spp.	sautéed
Dulas		
Dulse	Palmaria palmata	rehydrated
		salads, sauces, dressings,
		creams, ceviche, sushi,
		croquettes, side dishes
Alga percebe	Codium spp.	and rice dishes
Lashara da man		
Lechuga de mar	Ulva spp.	preserves

Aim

Project background

Algae used in this study:

Laminaria spp.


Saccharina latissima Himanthalia elongata

Undaria pinnatifida

Porphyra spp.

Palmaria palmata

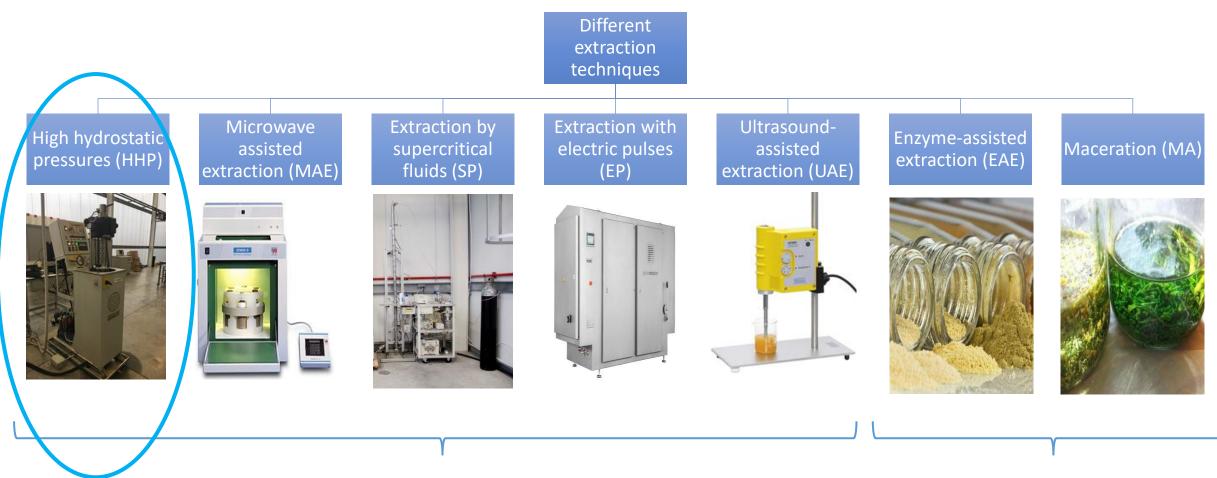
- Codium spp.
- Ulva spp.

RSM design

Parameters studied:

- Concentration ethanol: 0
 100 % aqueous-
- ethanol, v/v (solid liquid ratio 30 g/L).
- Time: 10 110 min.
- Pressure: 100 600 mPa.

Response surface methodology using a five-level central composite design combining the independent variables of processing time, pressure and solvent.


RSM results

Phenolic and dry weight results

Aim - methods

Non conventional techniques

Conventional techniques

Material and methods - HHP

Extracts lyophilisation

HP extraction

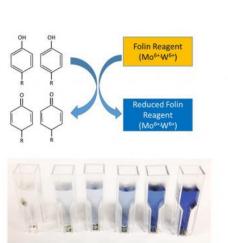

High pressure extraction (HHP)

Chemical characterization

Centrifugation

Power Ltd., Harlow, UK)

model S-FL-085-09-W (Stansted Fluid



Material and methods - quantification

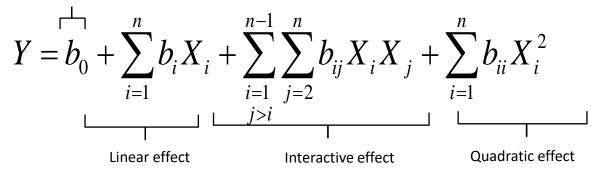
HPLC-UV system

Identification and quantification

Folin-Ciocalteau technique

Mobile phase: Formic acid (0,1 %)

Stationary phase: Inertsil 100A ODS-3 reversed-phase column (5 μ m, 4.6 \times 150 mm) thermostatted at 35 °C



Extraction Variables (independent):

X₁: Extraction time - t (min)
X₂: Pressure - P (mPa)
X₃: Solvent - % (Water-Ethanol)

Response Surface Methodology (RSM)

Intercept

Response variables (dependent):

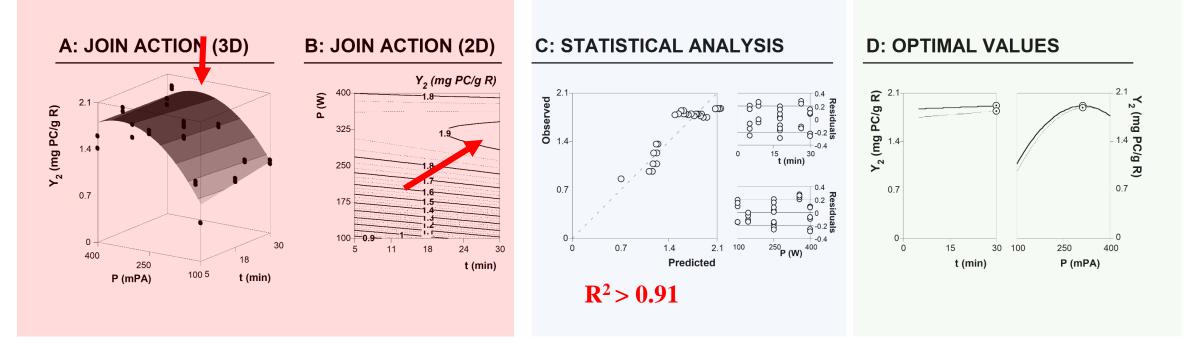
 Y_1 : % of extraction yield Y_2 : mg of galic acid per g of dw seaweed

> The optimization process here described can be solved with 31 experimental points plus some preliminary trials to centre the ranges of the variables involved.

> The mathematical solutions produced allow to control the complete extraction process and can be used by the industry to select the conditions that makes the process more profitable.

Chemical study of **3 variables** may involve **MORE THAN 200** possible experimental combinations for each extraction technique

Table 1: Experimental RSM results of the CCCD for the optimization of the three main variables involved (X_1 , X_2 , and X_3) in the HPE for the two response value formats assessed (Y_1 , and Y_2). Three replicates were performed for each condition for each technique. Samples used were Kombu (**KR**, *Laminaria spp.*), Kombu real (**KR**, *Saccharina latissimi*), Espagueti de mar (**EM**, *Himanthalia elongate*), Wakame (**W**, *Undaria pinnatifida*), Nori (**N**, *Porphyra spp.*), Dulse (**D**, Palmaria palmate), Alga percebe (**AP**, Codium spp.) and Lechuga de mar (**LM**, Ulva spp.).


	11	×	1 /	11 //	×	-	-		81	``````````````````````````````````````		11	1			N	-	1 /
	RIABI			EXTR	ACTEI	D RESI	DUES	RESPO	ONSES		TO	TAL P	HENO	LIC C	ONTE	NT RES	SPONS	SES
COD	ED VAI	LUES	K	KR	EM	W	N	D	AP	LM	K	KR	EM	W	N	D	AP	LM
X_l	X_2	X_3	%	%	%	%	%	%	%	%	mg PC/g	mg PC/g	mg PC/g	mg PC/g	mg PC/g	mg PC/g	mg PC/g	mg PC/g
-1	-1	-1	23.5	32.8	35.8	27.5	53.7	46.5	43.3	38.7	78.3	109.4	119.4	91.7	178.9	155.0	144.4	128.9
-1	-1	1	27.3	34.3	18.7	18.5	32.7	21.5	14.5	29.5	48.9	114.4	62.2	61.7	108.9	71.7	48.3	98.3
-1	1	-1	10.0	40.3	32.3	28.0	51.0	48.0	43.0	37.5	91.1	134.4	107.8	93.3	170.0	160.0	143.3	125.0
-1	1	1	14.5	26.3	15.2	18.7	22.2	20.2	20.7	27.7	48.3	87.8	50.6	62.2	73.9	67.2	68.9	92.2
1	-1	-1	30.0	43.3	36.0	27.5	51.8	47.3	45.0	41.3	100.0	144.4	120.0	91.7	172.8	157.8	150.0	137.8
1	-1	1	14.7	35.8	15.2	20.0	15.2	13.2	22.3	29.2	48.9	119.4	50.6	66.7	50.6	43.9	74.4	97.2
1	1	-1	27.3	39.2	33.3	27.8	52.0	47.2	40.3	37.3	91.1	130.6	111.1	92.8	173.3	157.2	134.4	124.4
1	1	1	10.0	29.5	15.0	16.2	29.7	23.8	25.5	30.5	33.3	98.3	50.0	53.9	98.9	79.4	85.0	101.7
-1.68	0	0	17.0	36.7	25.8	24.5	46.8	40.3	33.8	33.7	56.7	122.2	86.1	81.7	156.1	134.4	112.8	112.2
1.68	0	0	18.2	34.5	27.2	24.8	47.7	38.5	38.7	35.3	60.6	115.0	90.6	82.8	158.9	128.3	128.9	117.8
0	-1.68	0	18.3	34.5	25.7	23.7	50.7	42.7	32.2	36.0	61.1	115.0	85.6	78.9	168.9	142.2	107.2	120.0
0	1.68	0	0.0	26.7	22.2	0.0	0.0	38.8	31.2	31.0	0.0	88.9	73.9	0.0	0.0	129.4	103.9	103.3
0	0	-1.68	24.7	40.3	43.2	25.0	49.7	53.3	54.7	42.3	82.2	134.4	143.9	83.3	165.6	177.8	182.2	141.1
0	0	1.68	1.3	10.2	2.8	6.7	4.5	5.5	4.2	7.2	4.4	33.9	9.4	22.2	15.0	18.3	13.9	23.9
-1.68	-1.68	-1.68	29.3	40.0	36.5	23.2	48.0	40.8	51.0	33.7	97.8	133.3	121.7	77.2	160.0	136.1	170.0	112.2
-1.68	-1.68	1.68	1.7	6.3	2.5	3.2	3.5	5.0	2.0	5.7	5.6	21.1	8.3	10.6	11.7	16.7	6.7	18.9
-1.68	1.68	-1.68	27.3	41.3	45.7	17.0	50.2	56.3	48.7	38.7	91.1	137.8	152.2	56.7	167.2	187.8	162.2	128.9
-1.68	1.68	1.68	0.3	10.2	3.3	6.7	5.0	4.8	2.2	5.5	1.1	33.9	11.1	22.2	16.7	16.1	7.2	18.3
1.68	-1.68	-1.68	35.7	37.2	45.8	27.0	54.2	29.7	54.2	40.7	118.9	123.9	152.8	90.0	180.6	98.9	180.6	135.6
1.68	-1.68	1.68	0.2	5.8	1.7	4.2	4.5	2.0	1.5	5.5	0.6	19.4	5.6	13.9	51.1	6.7	5.0	18.3
1.68 1.68	1.68	-1.68	28.7	34.5	42.5	29.8	30.8	53.5	45.2	35.8	95.6	115.0	141.7	99.4	102.8	178.3	150.6	119.4
	1.68	1.68	0.5	9.5	4.2	6.5	3.8	1.8	1.7	5.7	1.7	31.7	13.9	21.7	12.8	6.1	5.6	18.9
0	0	0	18.8	37.3	28.7	27.0	49.2	43.0	35.8	37.5	62.8	124.4	95.6	90.0	163.9	143.3	119.4	125.0
0	0	0	19.3	39.2	29.2	26.0	52.2	41.2	38.0	38.0	64.4	130.6	97.2	86.7	173.9	137.2	126.7	126.7
· ·	-	0	21.0	36.8 38.7	27.0 27.7	25.2 23.2	51.5 52.7	35.8 42.5	31.7 35.3	35.2 36.3	70.0	122.8 128.9	90.0	83.9 77.2	171.7	119.4	105.6	117.2
0	0	0	20.0								66.7		92.2		175.6	141.7	117.8	121.1
0	0	0	17.8 19.3	34.3 33.8	20.2 0.0	22.3 24.7	50.0 43.0	0.0 42.7	30.3 35.0	42.0 38.8	59.4 64.4	114.4 112.8	67.2 0.0	74.4 82.2	166.7 143.3	0.0 142.2	101.1 116.7	140.0 129.4

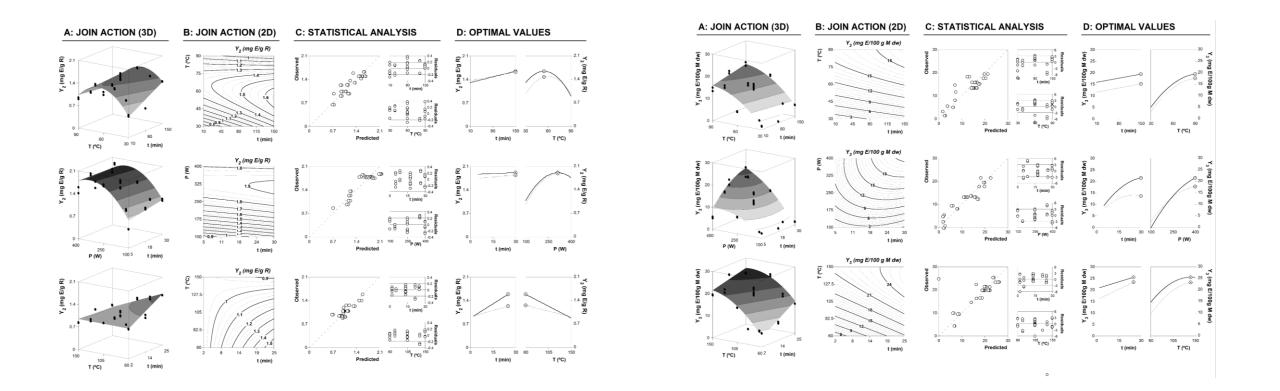
Results and discussion - RSM

Y₂: Phenolic Compounds Content

$$Y = b_0 + \sum_{i=1}^n b_i X_i + \sum_{\substack{i=1\\j>i}}^{n-1} \sum_{j=2}^n b_{ij} X_i X_j + \sum_{i=1}^n b_{ii} X_i^2$$

Graphical results in terms of response value format Y2 (mg PC/g R). Theoretical 3D response surface predicted with the second order polynomial equation and statistical description of the model

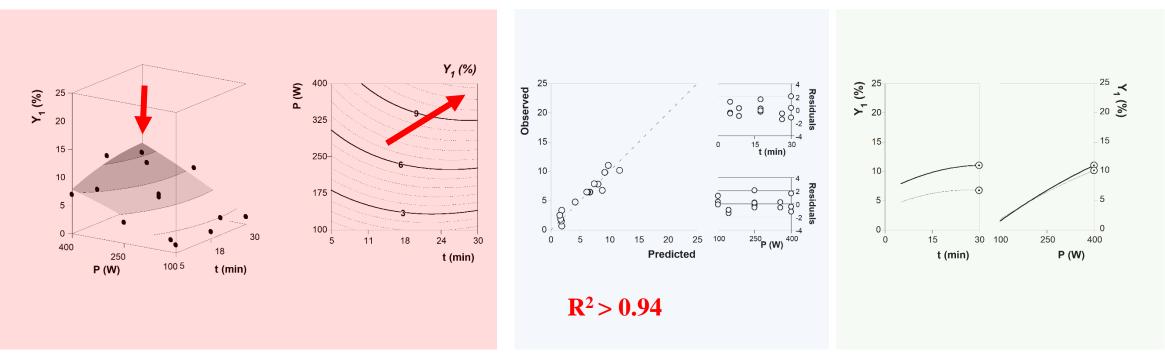
Kombu real


(Saccharina latissima)

Results and discussion - RSM

Y₂: Phenolic Compounds Content

$$Y = b_0 + \sum_{i=1}^n b_i X_i + \sum_{\substack{i=1\\j>i}}^{n-1} \sum_{j=2}^n b_{ij} X_i X_j + \sum_{i=1}^n b_{ii} X_i^2$$



Results and discussion - RSM

Y₁. Extraction yield (%)

$$X = b_0 + \sum_{i=1}^n b_i X_i + \sum_{\substack{i=1\\j>i}}^{n-1} \sum_{j=2}^n b_{ij} X_i X_j + \sum_{i=1}^n b_{ii} X_i^2$$

J

Graphical results in terms of response value format Y2 (%). Theoretical 3D response surface predicted with the second order polynomial equation and statistical description of the model

Kombu real (Saccharina latissima)

Table 3. Variable (X_1 , X_2 , and X_3) conditions in natural values that lead to optimal response values for RSM using a CCCD for HPE for the two individual response value formats (Y_1 and Y_2) and for the global optimal conditions. Samples used were Kombu (**K**, *Laminaria spp.*), Kombu real (**KR**, *Saccharina latissimi*), Espagueti de mar (**EM**, *Himanthalia elongate*), Wakame (**W**, *Undaria pinnatifida*), Nori (**N**, *Porphyra spp.*), Dulse (**D**, Palmaria palmate), Alga percebe (**AP**, Codium spp.) and Lechuga de mar (**LM**, Ulva spp.).

CRITERIA		OPTIMAL	VARIABLE CO	OBTIMUM DESDONSE			
		X_l : t (min)	<i>X</i> ₂ : <i>P</i> (mP)	X3: S (%)	OPTIMUM RESPONSE		
K	Y_1	61	360	90	11.43±2.82	%	
	Y_2	74	321	74	58.58±2.27	mg PC/g S dw	
KR	$\frac{Y_1}{Y_2}$	31 94	388 383	52 85	22.03±2.51 78.70±1.56	% mg PC/g S dw	
EM	Y_1	94	383	99	9.86±2.60	%	
	Y_2	81	279	53	67.74±1.27	mg PC/g S dw	
W	Y_1	98	111	69	20.17±2.96	%	
	Y_2	36	232	36	54.27±2.08	mg PC/g S dw	
N	Y_1	33	272	20	15.55±1.50	%	
	Y_2	106	304	31	82.89±2.94	mg PC/g S dw	
D	Y_1	40	463	99	8.84±1.35	%	
	Y_2	100	274	100	82.27±1.99	mg PC/g S dw	
AP	Y_1	47	148	27	18.25±1.53	%	
	Y_2	30	175	89	62.18±1.27	mg PC/g S dw	
LM	Y_1	41	370	50	21.18±1.00	%	
	Y_2	91	398	90	11.95±2.73	mg PC/g S dw	

Acknowledgment:

To AlgaMar for the algae material provided (www.algamar.com). To MICINN for the financial support for the Ramón&Cajal researcher of M.A. Prieto. To University of Vigo for the financial support for the pre-doctoral researchers of A.G. Pereira and C. Jiménez López. The authors are also grateful to the Interreg España-Portugal for financial support through the project 0377_Iberphenol_6_E

Thank you for your attention

