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Abstract: This study aims at searching for characteristic parameters of tree trunks to establish 

volume model and dynamic analysis of volume based on terrestrial laser scanning (TLS). We 

collected three phases of data over 5 years from an artificial Liriodendron chinense forest. The upper 

diameters of the tree stump and tree height data were obtained by the multi-station scanning 

method. A novel hierarchical TLS point cloud feature named the height cumulative percentage 

(Hz%) was designed. The shape of the upper tree trunk extracted by the point cloud is equivalent 

to that of the analytical tree with inflection points at 25% and 50% of the height, and the dynamic 

volume change of the model which established by hierarchical features was highly related to the 

volume change of the actual point cloud extraction. The obtained results reflect the fact that the Hz% 

value provided by multi-station scanning was closely related to the characteristic stumpage 

parameters and could be used to invert the dynamic forest structure. The volume model established 

based on point cloud hierarchical parameters in this study could be used to monitoring the dynamic 

changes of forest volume and provide a new reference for applying TLS point clouds for the 

dynamic monitoring of forest resources. 

Keywords: Height Accumulative Percentage; Forest Structure; Dynamic Change; Terrestrial Laser 

Scan; Volume Model; Liriodendron chinense 

 

1. Introduction 

Forest resource surveys provide information about the structure and distribution of and 

dynamic changes to forest resources [1]. Over the past 20 years, studies have increasingly applied 

laser point cloud data to extract information on forest structures [2] at the individual tree [3] and 

sample plot levels [4]. Many researches have explored the ability of terrestrial laser scanning (TLS) 

technology to measure forestland factors [5], [6] and have become the mainstream approach for 

forestland surveys [4]. One advantage of TLS is capable of accurately measuring the structural 

properties of live stumpage, such as the stem curves, which are difficult to directly measure by using 

traditional tools [7]. Previous studies have shown that the characteristic parameters determined by 

laser radar can invert the structural parameters of forests and have been widely applied [14]. These 
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studies applied airborne laser scanning (ALS), extracted the height percentile and density 

characteristic parameters to invert the forest structural parameters and resulted that the 90% height 

percentile can reliably predict most forest structural parameters[8].Airborne laser scanning (ALS) 

obtains the vertical structure information from the upper layer of the stand, it is often affected by 

canopy occlusion and the structure of the lower layer is ignored, so some studies have applied the 

same segmentation method to TLS point cloud data [9]. TLS has shown considerable promise in 

obtaining highly accurate estimates of the tree diameter, height, and stem curve. 

In this study, we selected multi-station scanning method to obtain complete information about 

the stumpage diameter, tree height and vertical distribution of the tree crown. An algorithm for 

extracting the hierarchical characteristics of TLS point clouds was designed. Then, models 

corresponding to the measured stumpage characteristics were developed to establish a volume 

model based on the characteristic parameters by using data in three periods to provide a reference 

for applying TLS in monitoring dynamic forest changes. 

2. Materials and Methods  

2.1. Study Site and Data Collection 

The study site was located within an even-aged forest of Chinese tulip trees (Liriodendron 

chinense) forest was planted with a spacing of 3 m × 3 m in March 1981, and the sample plot has 

dimensions of 40 m × 25 m in the west of Wuqi Hill in Jiangsu Province, China. 

The point cloud data of the sample plot were collected in three phases in winter in January 2014, 

2018 and 2019, when the trees were leafless. In the study period, a Riegl VZ-400i laser scanner with 

an original digital echo, real-time waveform processing and multi-beam transceiver processing 

technologies was used, its scanning rate is 500,000 dots/second. Inspected sample data were obtained 

by conducting a manual inventory of each standing tree. Including the tree height, diameter at breast 

height (DBH) and the crown width. At the same time, in the first sampling period of 2014, two 

analytical trees were selected for the test sample data (DBH were 29.2cm and 33.1cm). 

2.2. Data Method 

The sample plot was scanned at multiple stations. LiDAR360 v2.2 was used to extract the digital 

elevation model (DEM) and carry out the normalization procedure. Because the trees were leafless, 

the degree of overlap between individual tree point clouds obtained at the canopy level was almost 

negligible. To obtain complete vertical structure information of trunk, individual trees were located 

and segmented by manual identification and cutting to facilitate the extraction of stem parameters. 

2.2.1. Extract Tree Height and Diameters at Various Heights 

The height of a single tree was calculated by the point cloud height difference, which was the 

peak cloud height of a single tree minus the height of the ground point cloud. Diameters at various 

heights was based on the single tree point data, the trunk was sliced up to get the rings at the top of 

each tree heights. Because excessively thin slices of point cloud data will result in insufficient data to 

for calculating the diameter while overly thick slices will reduce the extraction efficiency [7]. This 

study controlled the slice thickness at 0.1 m. Rings were sliced at intervals of 1 m through the trunk. 

Then, the least square method was used to fit the diameter of the upper part of the stem. 

2.2.2. Obtain the Volume of Each Tree 

The area segment quadrature method was used to calculate the standing timber volume of the 

central section of each tree[10]. According to the previous step, the central diameter of each segment 

was extracted, and the remaining segment (less than 2 m) was treated as the tip of the tree. The stem 

volume of each Chinese tulip tree (L. chinense) in the sample plot could be calculated with equation 

1: 
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where V is the stem volume, 
i

g is the cross-sectional area of each segment, l is the length of the 

segment, g is the cross-sectional area of the tip, l is the length of the tip, and n is the number of 

segments. 

2.2.3. Analysis Point Cloud Hierarchical Characteristic 

Point cloud density features can accurately reflect the state of the target spatial distribution, but 

most of them are based on plane density analysis, which cannot fully reflect the real density 

characteristics of three-dimensional point clouds. From a hierarchical view of the point cloud of a 

standing tree, this research proposed the concept of the height cumulative percentage (Hz%) of the 

point cloud to study the association of Hz% with other important forest resource parameters, such as 

the stem volume. 

Hz% represents the cumulative total height (z%) of all the points in the colud at a lower or equal 

height. Before calculating Hz%, the point cloud of each individual tree should be normalized (with the 

DEM as the ground datum) and then sorted according to each point’s height. MATLAB 2014a was 

used to process the data and to calculate Hz% based on equations 2 and 3: 
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where n is the total number of points for the point cloud of a tree and hi is the height of point i. m 

denotes the number of points at which equation 8 is balanced, and hm is assigned to Hz%.  

Other hierarchical features of the point cloud, such as the mean height (Ht mean:Average height 

of the cloud point above the ground), standard deviation of the height (Ht std dev:Standard deviation 

of the point cloud height), variance of the point cloud height (Ht var:Variance of the point cloud 

height), quartile of the height (Ht IQ:Quartile distance of the point cloud height), average absolute 

deviation of the height (AAD:Average absolute deviation) and median absolute deviation from the 

median height (MAD:Median absolute deviation from the overall median), were also extracted as 

candidate variables for the subsequent stem volume regression . 

2.3. Modeling and Verification 

To find the most suitable parameters for the volume model, the linear equation shown in formula 

(4) was employed. According to the number of selected parameters, the formula was extended to 

obtain a unary primary volume model and a binary primary volume model[11]. Hence, three types 

of models were established. First, Hz% and DBH were taken as variables to conduct the modeling. 

Second, volume modeling was carried out by taking Hz% as the lone variable. Third, Hz% and other 

hierarchical features were modeled as variables. 

= + + + +
0 1 1 2 2 j j

V a a x a x a x , j=1...m                          (4) 

Pearson's correlation coefficient (P) was calculated between each extracted feature parameter 

and volume (V). Feature parameters with a P value larger than 0.6 were selected and used as 

candidate variables for the volume model. The parameters were calculated by using the multivariate 

stepwise regression of SPSS19 software, where the significance level of the model parameters was set 

as 0.05, and the equations with high collinearity were eliminated by using the variance inflation factor 

(i.e., VIF> 10) variable by using the variance inflation factor (VIF). 

Then, the binary volume equation [10] was applied as a reference model (Formula 5) to establish 

the volume model based on the regression relationship between the DBH and tree height. This model 

reflects that certain stem characteristics have extensive regional applicability.  
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where V is the volume value, 
i

a  denotes the coefficients, and 
i

x  represents the independent 

variables of the equation. 

The coefficient of determination (R2), root mean square error (RMSE) and F value were utilized 

as the evaluation indices for the model. The 10-fold cross-validation method was used to verify the 

prediction effect of the model. The prediction accuracy of the model was verified by building a scatter 

plot between the estimated values of the model and the TLS-extracted values. 

Dynamic changes in the volume of the Chinese tulip tree were analyzed based on the data from 

the three periods. The volume of stumpage in the three periods was acquired by using the 

characteristic parameter volume prediction model, and the dynamic change in the volume was 

calculated according to the diameter classes. The changes were compared with the actual volume 

change computed by the point cloud, and the feasibility of applying the inverted volume prediction 

model to analyze the dynamic changes in timber volume was evaluated. 

3. Results and Analysis 

3.1. Verification of the Extraction with Stem Analysis 

The extraction of the upper diameter should be confirmed. We analysed the upper diameter of 

point cloud extraction with the analytical wood data of the plant, result shown a high 

correlation(R2=0.9864)  

Data from the stem analysis were used to draw the taper curves as shown in Figure 1 b and d. 

Tree heights of 10 to 20 m represent the inflection points of the tree trunk. The point cloud data for 

these two trees were also drawn as shown in Figure 1 a and c. Hz% clearly increases with increasing 

height and reaches approximately 10 m of the tree height at 25%, which appears to be an inflection 

point; then, Hz% reaches approximately 20 m of the tree height at value of 50%, which appears to be 

another inflection point and is followed by a gentle increasing trend for Hz%. 
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Figure 1. Comparative analysis of the height cumulative percentile and analytical tree stem curve. (a 

and c: Hz% versus height; b and d: analytical wood stem curve). 
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3.2. Features extracted from the point cloud data in three periods 

This research extracted the tree structure parameters (DBH and tree height) and hierarchical 

features (Hz% and Hmean) and counted the volume of each standing tree in all three periods. A 

summary of the stumpage features is shown in Table 1. The average DBH of a single tree increased 

significantly, and the average annual growth was stable at 0.3 cm.The standard deviation of DBH 

growth was large at 5.95 in 2014, 6.49 in 2018, and 7.66 in 2019. The tree height and volume also 

increased annually. The average heights of H75, H55, and H25, which refer to the spatial distribution 

of tree trunks from top to bottom, decreased annually in accordance with the law of tree growth. 

Table 1. Summary of features of a single tree in the three periods. 

Period  DBH (cm) Tree height (m) 
Volume 

(m3) 
H75 H55 H25 Hmean 

2014 

range 14.21-42.58 17.11-32.40 0.13-1.75 
11.98-

29.72 

18.96-

26.84 

14.18-

20.13 

1.84-

26.64 

mean value 25.96 28.30 0.69 24.51 20.51 11.443 15.65 

standard 

deviation 
5.95 3.52 0.36 11.45 7.76 3.56 8.88 

2018 

range 15.21-45.04 17.53-34.32 0.14-1.96 
12.59-

30.79 
7.75-27.99 

4.98-

19.57 

4.09-

28.70 

mean value 27.52 29.73 0.77 23.49 18.53 9.41 16.61 

standard 

deviation 
6.49 3.93 0.40 12.1 7.51 2.93 9.24 

2019 

range 15.83-45.61 17.67-35.00 0.15-1.98 9.22-22.02 7.22-17.07 2.92-8.96 
2.71-

26.33 

mean value 27.87 30.12 0.80 15.29 10.47 5.55 10.93 

standard 

deviation 
7.66 4.08 0.44 3.02 5.32 10.08 12.73 

3.3. Tree Volume Modeling Results 

A Pearson correlation analysis was conducted on individual trees. According to the analysis 

results of the three periods, the DBH has the highest correlation with the tree volume, followed by 

the tree height, which conforms to the rule regarding the three elements of volume. Among the 

correlations between the hierarchical features and the tree volume, the highest correlation parameter 

in 2014 was H25 and then H50; the highest correlation parameter in 2018 was H25 and then H50; and 

the highest correlation parameter in 2019 was H80 and then H75.  

Thus, the volume model was established by using the hierarchical features DBH and tree height 

as variables. The model results are shown in Table 2. Among them, the binary volume models 

numbered1 are used as reference models and have the highest R2 values (0.974, 0.974 and 0.919, 

respectively), and H and DBH are variables. The models numbered2 are also binary linear models 

with H25 and DBH as variables, and their R2 values are 0.951, 0.957 and 0.901. Table 2 shows that the 

models with hierarchical features (H50, H80 and H75) have slightly lower R2 values; however these 

models seem to be better for predicting the volume, thus revealing the efficacy of Hz%. In contrast, 

H25 is the first inflection point along the trunk. 

Table 2. Results of the volume model for individual trees. 

Time 
Serial 

No. 
Parameter and Coefficient R2 F value RMSE/(m3) 

2014 

1 v=0.106(DBH)2.035 (H)1.352 0.974 122.419 0.059 

2 v=-0.795+0.021(H25)+4.847(DBH) 0.951 570.604 0.083 

3 v=-0.617+0.073(H50)-0.002(H80) 0.707 69.961 0.199 

4 v=-0.747+0.128(H75)-0.062(H80) 0.612 45.690 0.229 

2018 

1 v=0.247 (DBH)2.018(H)1.075 0.974 140.053 0.066 

2 v=-0.928+5.655(H25)+0.016(DBH) 0.957 661.538 0.086 

3 v=-0.699+0.051(H50)+0.025(H80) 0.712 72.799 0.219 
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4 v=-0.872+0.618(H75)+0.009(H80) 0.642 52.983 0.244 

2019 

1 v=0.734(DBH)2.002(H)0.734 0.919 288.254 0.039 

2 
v=0.062+0.092（H25）+0.732（DB

H） 
0.901 233.182 0.140 

3 v=0.494+0.011(H75)+0.008（H85) 0.632 28.642 0.274 

4 v=-1.147-0.034(H50)+0.156(H80) 0.638 29.393 0.272 

Models 2 are used to predict the individual tree volume, and the scatterplot of the predicted 

value of the model and the volume of individual tree in three periods were drawn. After verification, 

no significant difference was observed between the predicted volume and the volume extracted from 

the point cloud. Therefore, the volume model with hierarchical parameters can be used as the volume 

model for each period. 

Then, the volume was counted for each DBH grade in each period, and the results are shown in 

Table 3. As the same time, The linear relationship of the volume changes in the DBH grades between 

the modeled values and the values extracted from the point cloud was established and determined 

to have an intercept of -0.081, a slope of 1.14, and an R2 of 0.98. 

Table 3. Volume variations in DBH grades from 2014 to 2019. 

Diameter 

Grade/(cm

) 

Number of Diameter 

Grade 
Model 2 Prediction/(m3) 

Volume Change 2018-

2014/(m3) 

Volume Change 2019-

2018/(m3) 

2014 2018 2019 2014 2018 2019 Model 2 
TLS 

Measurement 
Model 2 

TLS 

Measurement 

10 2 0 0 0.32 0.00 0.00 -0.32 -0.29 0.00 0.00 

15 10 9 8 2.76 2.06 1.92 -0.70 -0.44 -0.11 -0.12 

20 13 9 8 7.36 5.81 5.35 -1.55 -2.41 -0.46 -0.78 

25 19 15 14 15.28 13.59 12.78 -1.69 -2.03 -0.81 -0.49 

30 13 18 15 15.34 21.47 22.67 6.13 6.97 1.20 1.53 

35 2 3 8 3.61 6.34 8.11 2.73 2.88 1.77 1.30 

40 1 0 1 1.14 0.00 1.60 -1.14 -1.75 1.60 1.65 

45 0 1 1 0.00 1.40 1.73 1.40 1.96 0.33 0.31 

3.4 Dynamic Analysis of the Tree Structure from Features 

3.4.1. Individual Tree Changes and the Growth Rate 

 Table 4 displays the individual changes in and growth rates of the tree height, DBH and tree 

volume in the three phases. Since the investigated periods spanned four years and one year, the 

growth rates are distinguishedas four-years and one-year rates. The average rates of change among 

the three phases are as follows: tree height average growth rate: 0.36-0.39 m; DBH average growth 

rate of 0.34 -0.38 cm; and volume average growth rate of 0.02-0.03 m3. Among these rates, the average 

growth rate of the tree height is greater than the average growth rate in the four-year period of 2014-

2018. Moreover, the volume growth rates in all three periods are relatively average. 

Table 4. Growth rates of the features for individual trees in the three periods. 

  

2014-2018 2018-2019 2014-2019 

Growth rate in 

four years 

Average growth 

rate 

Growth rate 

in one year 

Average 

growth rate 

Growth rate in 

five years 

Average 

growth rate 

Tree height/(m) 1.43 0.36 0.39 0.39 1.82 0.36 

DBH/(cm) 1.57 0.39 0.34 0.34 1.91 0.38 

Volume/(m3) 0.08 0.02 0.03 0.03 0.11 0.02 

The variations in the diameter grades of the sample plot during the three periods are shown in 

Figure 2. The diameter step was 5 cm, and the initial diameter class was set to 5 cm. As the number 

of trees was counted by diameter class, the peak of the diameter distribution curve shifted from 25 

cm in 2014 to 30 cm in 2018. Among the diameter classes, the shifted numbers of the 20 cm and 25 cm 

diameter classes were relatively high. 

javascript:;
javascript:;
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Figure 2. Diameter grade distribution curves for 2014, 2018 and 2019. 

3.4.2. Height Cumulative Percentage Analysis 

As shown in Figure 3, the average Hz% of individual trees increases with the height in all three 

periods; with the first inflection point appearing at 25% (the height of the tree is approximately 10 

m), with Hz% = 10 m. The second inflection point appears at 55% (the height of the tree is 

approximately 20 m), with Hz%= 20 m. These results indicate that the hierarchical features can reflect 

the change in the stem shape, and these features appear regularly within all five years. The height 

cumulative percentages of 25% and 55% for the Chinese tulip (L. chinense) tree are the two inflection 

points for standing trees. As evidenced, the cumulative height percentage of the point cloud can 

reflect the change in the stem shape. 

A comparison with Figure 1 shows the Hz% and stem shape variations, and the hierarchical 

feature clearly reflects the variation in the stem shape from the point cloud distribution with the tree 

height. Furthermore, 25% of Hz% is consistent with the periscope height. 
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Figure 3. Average Hz% for individual trees in three periods. 

4. Discussion and Conclusions 

First, Laser scanning technology provides data with high density point cloud that can be used 

to extract related geometric and statistical parameters for individual trees. This study focuses on point 

cloud data obtained by TLS. After splicing, denoising and normalization, the point cloud data have 

a relatively uniform point distribution regardless of the type of equipment. Photogrammetry and 

ALS technology can also achieve the same data distribution [12]. Therefore, whether vertical 

hierarchical parameters can be used as fusion features for multi-source point cloud data is worthy of 

further discussion. 
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Second, this paper studied the potential of TLS by estimating the volume of L. chinense in the 

study area by using point cloud hierarchical and statistical parameters. These parameters changed 

with the growth characteristics, namely, the tree height and canopy diameter. Through the analysis 

of the correlation between these parameters and volume, we concluded that the H50 and H25 were 

mostly correlated with volume. At the same time, the model based on these parameters had high 

accuracy and can be used for dynamic analysis (Table 3). 

Third, the height of each quantile can be calculated analogously in a sample canopy profile of 

the ground [21]. TLS data have dense point clouds under the canopy and can obtain structures with 

precision. This research defined the ground vertical characteristic parameter Hz%, This parameter 

extends the measurements of standing tree point clouds and extracts the characteristics reflecting the 

tree height and canopy from the vertical distribution features of point clouds. Whether this feature 

can reveal the trunk shape and whether Hz% is related to the planting density and species 

characteristics are worthy of further discussion. Hz% could also be discussed as a new taper parameter 

that can be obtained by laser scanning technology. 
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