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Abstract: The goal of deep anomaly detection is to identify abnormal data by utilizing a deep
neural network trained by a normal training dataset. In general, industrial visual anomaly detection
problems distinguish normal and abnormal data through small morphological differences, such as
crack and stain. Nevertheless, most existing algorithms focused on capturing not morphological
features but semantic features of normal data. Therefore, they yield poor performance on real-world
visual inspection, even though they show their superiority on simulations with representative image
classification datasets. To solve this problem, we propose a novel deep anomaly detection method that
encourages understanding salient morphological features of normal data. The main idea behind our
algorithm is to train a multi-class model to classify between dozens of morphological transformations
applied to all the given data. To this end, the proposed algorithm utilizes a self-supervised learning
strategy, which makes unsupervised learning straightforwardly. Additionally, we present a kernel
size loss to enhance the proposed neural networks’ morphological feature representation power.
This objective function is defined as the loss between predicted kernel size and label kernel size via
morphological transformed images with the label kernel. In all experiments on the industrial dataset,
the proposed method demonstrates superior performance. For instance, in the MVTec anomaly
detection task, our model achieves the AUROC of 72.92% that is 8.74% higher than the semantic
feature-based deep anomaly detection.
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1. Introduction

Deep anomaly detection means verifying abnormal data via a deep neural network trained by
normal instances. It is a significant challenge that has been well-studied within various application
domains, including video surveillance, disease diagnosis, and visual inspection. In this paper, we tackle
the problem of deep anomaly detection in images. The intuition behind most existing methodologies
in this problem is training the deep neural network to understand semantically important features
of normal data. Hence, most of these studies [1–3] reported their superior results on a representative
image classification dataset (e.g., MNIST [4] and CIFAR-10 [5]), which is composed of clearly
distinguishable between classes. However, with a point of view of industrial inspection, these existing
methodologies are not useful to solve real-world problems. In the real-world problem, the criterion
that discriminates abnormal data from normal data usually defined as morphological differences such
as crack, stain, and bent, which cannot describe semantically. For ease of understanding, the visual
descriptions of both semantic and morphological differences show in Figure 1.

Proceedings 2020, 0, 5; doi:10.3390/proceedings0010005 www.mdpi.com/journal/proceedings

http://www.mdpi.com/journal/proceedings
http://www.mdpi.com/journal/proceedings
http://www.mdpi.com
https://orcid.org/0000-0001-5496-2625
https://orcid.org/0000-0002-4856-8741
https://asec2020.sciforum.net/
http://www.mdpi.com/2504-3900/0/1/5?type=check_update&version=1
http://dx.doi.org/10.3390/proceedings0010005
http://www.mdpi.com/journal/proceedings


Proceedings 2020, 0, 5 2 of 6

(a) (b)

Figure 1. The visual description of semantic and morphological differences in images: (a) Semantic
difference: Both figures are sampled instances from the cats-and-dogs [6]. The difference like the
difference between “cat” and “dog” classes called the semantic difference. Generally, the semantic
difference does involve both the semantic and morphological differences. (b) Morphological difference:
Both figures are the sampled instances from the MVTec [7]. The difference like the difference between
“good wood” and “scratched wood” classes called the morphological difference. The morphological
difference does not involve the semantic difference. In other words, instances of both “good wood”
and “scratched wood” have the same semantic definition.

In order to utilize the morphological feature in deep anomaly detection, the proposed method
is based on self-supervised learning algorithm. The self-supervised learning means a form of
unsupervised learning where the training data provides the supervision. There is a proxy loss in this
learning mechanism that makes the deep neural network achieve the main goal of target application.
In other words, by utilizing this training algorithm, the deep neural network can learn what we care
about, such as the semantic difference or the morphological difference. There are several previous
methods in self-supervised learning-based deep anomaly detection [2,8]. These existing methods
focused on training the deep neural network to understand the geometric transformations of normal
data, including rotation and translation. Especially, training a deep neural network to classify the
rotation degree of normal data is an effective strategy to capture semantic information of normal
data [8]. Obviously, training geometric transformations in self-supervised learning does not help
identify abnormal data in the case represented in Figure 1b.

To mitigate this problem, we propose a novel deep anomaly detection algorithm based
on self-supervised learning using morphological transformations, including dilation, erosion,
and morphological gradient. The proposed method is based on the observation of industrial
anomaly detection problem, which requires a morphological understanding of normal data. Therefore,
the proposed method is trained over a self-labeled dataset, which is constructed by the normal
instances and their morphological transformed variants, accomplished by various morphological
transformations. At the test procedure, the trained neural network takes input on morphological
transformed test data, and the distribution of softmax activations on trained normal data is useful to
detect abnormal test data. The intuition behind the proposed method is that by training the classifier
to discriminate between transformed images, it has to learn valuable morphological features.

In this paper, we performed deep anomaly detection experiments based on the MVTec dataset [7],
which is composed to measure anomaly detection performance in industrial inspection. There are
various industrial defection types (e.g., crack, stain, bent) per class in this dataset. Additionally,
to demonstrate the superior performance of the proposed algorithm in the industrial aspect,
we compared with the latest state-of-the-art deep anomaly detection based on self-supervised
learning [2].

In summary, the main contributions of this study are as follows:

• The proposed method achieves superior performance in deep anomaly detection on industrial
inspection by training the deep neural network to capture salient morphological features of
normal data.
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• The proposed algorithm can flexibly adapt to various real-world deep anomaly detection problem
by choosing the adequate morphological transformation in image processing technology.

• Because the proposed methodology utilizes self-supervised learning, it has low computational
complexity than other deep anomaly detection methods such as reconstruction-based algorithm.

2. Proposed Method

This section describes the morphological transformations-based deep anomaly detection
algorithm, which applies to industrial and real-world anomaly detection problems.

2.1. Morphological Image Processing

In digital image processing, a mathematical morphology transformation is a mechanism
for extracting image components useful in representing and describing region shapes, such as
boundaries, skeletons, and the convex hull [9]. The proposed deep anomaly detection learns the
morphological features by three representative morphological transformations, including erosion,
dilation, and morphological gradient, which are described in the following sub-sections, respectively.

2.1.1. Erosion and Dilation

The erosion at any location (x, y) of image i by a kernel b is the minimum value of i in the region
covered by b when the central point (origin) of b is at (x, y). For instance, if b is a 3× 3 kernel, obtaining
the erosion at a pixel needs getting the minimum of the nine values of i included in the 3× 3 region
determined by the kernel when its origin is at that point. In equation form, the erosion is defined as:

[i	 b](x, y) = min
(s,t)∈b

i(x + s, y + t). (1)

Likewise, the dilation of i by b is designated as the maximum value of i from all the values of i
contained in the region coincident with b. That is,

[i⊕ b](x, y) = max
(s,t)∈b

i(x + s, y + t). (2)

Because erosion computes the minimum pixel value of i in every neighborhood of (x, y) coincident
with b, it expected that the size of bright features in i will be reduced, and the size of dark features
will be increased. Figure 2b,f show eroded images of normal and abnormal data in the “tile” class
of MVTec, respectively. As mentioned above, from these Figures, it can be seen that the area of dark
features is increased in eroded examples. Similarly, Figure 2c,g show the result of dilation. The effects
are the opposite of those obtained with erosion. The bright features were thickened, and the intensities
of the dark features were decreased.

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 2. Morphological transformed images in “tile” class of MVTec [7]: (a) normal image (b) eroded
normal image (c) dilated normal image (d) morphological gradient of normal image (e) abnormal image
(f) eroded abnormal image (g) dilated abnormal image (h) morphological gradient of abnormal image.

2.1.2. Morphological Gradient

To obtain the morphological gradient of an image, dilation and erosion can be used in combination
with image subtraction. In this paper, this operation is denoted as follows:
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i� b = (i⊕ b)− (i	 b). (3)

Because the dilation thickens regions in an image and the erosion shrinks them, the difference
between them highlights the boundaries between areas. Therefore, an image in which the edges
are emphasized and the homogeneous regions are suppressed; “derivative-like” (gradient) effect.
Figure 2d,h show morphological gradient images of normal and abnormal data, respectively. Especially
in Figure 2h, it can be seen that this morphological transformation emphasizes the cracked area.

2.2. Deep Anomaly Detection via Morphological Transformations

The proposed algorithm aims to train the deep neural network with normal data’s morphological
features through a self-supervised learning strategy. To achieve this goal, we propose to train
a deep neural network F to discriminate the morphological transformation types applied to an
image that is given to it as input. Specifically, we define a set of N1 discrete morphological
transformations, N2 discrete values for kernel width, and N3 discrete values for kernel height. In other
words, the proposed self-labeled dataset is a multi-class dataset that consists of N1N2N3 classes.
For clarification, we denote n2 × n3 size kernel b as bn2,n3 . Thus, we define a set of N1N2N3 discrete
morphological transformations as follows:

G = {g(.|n1, n2, n3)}N1,N2,N3
n1=1,n2=1,n3=1, (4)

where g(.|n1, n2, n3) denotes that applies to image i the morphological transformation with multi-class
label {n1, n2, n3} that produces the transformed image in1,n2,n3 = g(i|n1, n2, n3).

The deep neural network F takes an input as transformed image in∗1 ,n∗2 ,n∗3 (where the label
{n∗1 , n∗2 , n∗3} is unknown to F). After that, it produces a probability distribution of softmax response
over all possible morphological transformations, which is denoted as follows:

F(in∗1 ,n∗2 ,n∗3 |θ) = {Fn1,n2,n3(in∗1 ,n∗2 ,n∗3 |θ)}N1,N2,N3
n1=1,n2=1,n3=1, (5)

where Fn1,n2,n3(in∗1 ,n∗2 ,n∗3 |θ) is the predicted probability for morphological transformation with
{n∗1 , n∗2 , n∗3} and θ denotes the parameters of F.

Consequently, the proposed objective function is as follows:

min
θ

1
3T

T

∑
j=1

(
− 1

N1

N1

∑
n1=1

log(Fn1 (in∗1 ,n∗2 ,n∗3 |θ))− 1
N2

N2

∑
n2=1

log(Fn2 (in∗1 ,n∗2 ,n∗3 |θ))− 1
N3

N3

∑
n3=1

log(Fn3 (in∗1 ,n∗2 ,n∗3 |θ))
)

, (6)

where Fn1(in∗1 ,n∗2 ,n∗3 |θ), Fn2(in∗1 ,n∗2 ,n∗3 |θ), and Fn3(in∗1 ,n∗2 ,n∗3 |θ) denote predicted probability for n∗1 , n∗2 ,
and n∗3 , respectively. Through the above formulation, we enforce the deep neural network to learn
morphological features of normal images by predicting both transformation type and kernel size
simultaneously. Specifically, training to predict kernel size encourages the proposed algorithm to learn
useful morphological features in real-world industrial deep anomaly detection. In Figure 3, the overall
architecture of the proposed method is presented.

Figure 3. The proposed deep anomaly detection aims to discriminate the abnormal data using the
acquired morphological features of normal data in the training procedure. Therefore, if a given
morphological transformed data generates a high prediction error, it can be considered abnormal.
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3. Experimental Results

In this section, the deep anomaly detection experiments were performed to verify the performance
in industrial inspection. Besides, to show the superiority of the proposed method over the existing
algorithm, which is designed to lean the semantic feature of normal data, performance comparison
with [2] is reported. The backbone model of the proposed method is ResNet-18 [10]. In the experimental
results, there are three types of the proposed method to verify kernel size learning’s influence;
type 1 : n2 ∈ {1, 28, 56}, n3 ∈ {1, 28, 56}, type 2: n2 ∈ {8, 28, 56}, n3 ∈ {8, 28, 56}, and type 3:
n2 ∈ {1, 8, 28, 56}, n3 ∈ {1, 8, 28, 56}. The proposed algorithm was actualized using PyTorch in a GPU
implementation [11]. We performed experiments with RTX 2080Ti 11GB GPU and an Intel i7 CPU.

Deep Anomaly Detection on Industrial Dataset

In Table 1, we present the overall experimental results of the proposed method on the
representative industrial anomaly dataset, MVTec [7]. From the experimental results, it can be verified
that proposed self-supervised learning designed to capture salient features of normal data achieves
superior performance than the semantic feature-based deep anomaly detection. Interestingly, in a
performance comparison experiment between the proposed method’s three types, although the type
1 case model achieves fast convergence than the other cases, it produces the lowest performance.
This observation implies that creating an easy self-labeled dataset in self-supervised learning can
not help lead the deep neural network to where we intended. This phenomenon proved inductively
through the experimental results on the type 3 case. These overall experimental results prove that
utilizing morphological image features improves performance in real-world industrial problems.
The proposed method can also verify anomalies by inferencing a neural network, which takes a
processing time of almost 0.0125 s . In other words, it has low computational complexity.

Table 1. Comparison of AUROC (area under the receiver operating characteristic, %) performance
between [2] and the proposed algorithm.

Class Bottle Cable Capsule Carpet Grid Hazelnut Leather

[2] 83.10 77.81 75.31 38.12 31.47 67.14 64.10
Ours-type 1 87.86 76.89 77.50 57.22 15.62 68.71 39.67
Ours-type 2 88.41 77.55 69.92 53.97 29.91 62.29 66.58
Ours-type 3 95.16 80.34 73.08 57.91 29.99 68.04 82.88

Class Pill Screw Tile Toothbrush Transistor Wood Average

[2] 62.17 27.73 52.13 82.73 88.25 84.30 64.18
Ours-type 1 50.60 28.06 84.70 93.33 77.92 85.44 63.17
Ours-type 2 51.72 46.96 92.71 70.22 84.04 90.96 66.19
Ours-type 3 57.23 61.86 93.58 91.67 83.29 87.37 72.92

4. Conclusions

In this paper, we presented a novel deep anomaly detection that is proper for real-world industrial
problems. The proposed algorithm designs the self-supervised learning for morphological feature
representation of normal data. To demonstrate the proposed method’s superiority over the existing
semantic feature learning-based methodology, experimental results on diverse classes in MVTec
were reported. These experimental results show that the proposed algorithm provides an 8.74%
higher AUROC performance than the target method with 0.0125 s of processing time. Conclusively,
the proposed algorithm achieves high accuracy and low computational complexity simultaneously
in real-world industrial anomaly inspection applications. We leave the incorporation between the
proposed algorithm and semantic feature-based algorithm as future works.
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