1st International Electronic Conference on Applied Sciences

Deep Anomaly Detection via Morphological Transformations

Taehyeon Kim and Yoonsik Choe

Department of Electrical and Electronic Engineering,

Yonsei University

pyomu@yonsei.ac.kr

Real-world industrial anomaly detection

- The goal of deep anomaly detection is to identify abnormal data by utilizing a deep neural network trained by a normal training dataset
- Industrial visual anomaly detection problems generally **distinguish normal and abnormal data through small morphological differences**, such as crack and stain.

Semantic differences VS Morphological differences

• Nevertheless, most existing algorithms focused on capturing not morphological features but semantic features of normal data.

Semantic difference

Morphological difference

Morphological transformations - Erosion

• Erosion computes the minimum pixel value of image *i* in every neighborhood of (*x*, *y*), coincident with kernel *b*, it expected that the size of bright features in *i* will be reduced

$$[i \ominus b](x, y) = \min_{(s,t) \in b} i(x + s, y + t)$$

Normal

 Eroded normal

Abnormal

Eroded abnormal

Morphological transformations - Dilation

• Dilation computes the maximum pixel value of image *i* in every neighborhood of (*x*, *y*), coincident with kernel *b*, it expected that the size of darker features in *i* will be reduced

$$[i \ominus b](x, y) = \max_{(s,t) \in b} i(x + s, y + t)$$

Normal

Abnormal

Dilated abnormal

Morphological transformations – Morphological gradient

• To obtain the morphological gradient of an image, dilation and erosion can be used in combination with image subtraction.

$$i \odot b = (i \oplus b) - (i \ominus b)$$

The proposed deep anomaly detection

- The proposed deep anomaly detection aims to discriminate the abnormal data using the acquired morphological features of normal data in the training procedure.
- Therefore, if a given morphological transformed data generates a high prediction error, it can be considered abnormal.

- The proposed algorithm aims to train deep neural network-based morphological features in a self-supervised learning manner.
- To achieve this goal, we propose to train a deep neural network *F* to discriminate the morphological transformation types applied to an image that is given to it as input.
- Specifically, we define a set of N_1 discrete morphological transformations, N_2 discrete values for kernel width, and N_3 discrete values for kernel height.

• We define a set of $N_1N_2N_3$ discrete morphological transformations as follows:

$$G = \{g(. | n_1, n_2, n_3)\}_{n_1 = 1, n_2 = 1, n_3 = 1}^{N_1, N_2, N_3}$$

where $g(. | n_1, n_2, n_3)$ denotes that applies to image *i* the morphological transformation with multi-class label $\{n_1, n_2, n_3\}$ that produces the transformed image $i^{n_1, n_2, n_3} = g(i|n_1, n_2, n_3)$.

• The deep neural network *F* takes an input as transformed image $i^{n_1^*, n_2^*, n_3^*}$ where the label $\{n_1^*, n_2^*, n_3^*\}$ is unknown to *F*.

- The deep neural network *F* takes an input as transformed image $i^{n_1^*, n_2^*, n_3^*}$ where the label $\{n_1^*, n_2^*, n_3^*\}$ is unknown to *F*.
- It produces a probability distribution of softmax response over all possible morphological transformations, which is denoted as follows:

$$F(i^{n_1^*,n_2^*,n_3^*}|\theta) = \{F^{n_1,n_2,n_3}(i^{n_1^*,n_2^*,n_3^*}|\theta)\}_{n_1=1,n_2=1,n_3=1}^{N_1,N_2,N_3},$$

where $F^{n_1,n_2,n_3}(i^{n_1^*,n_2^*,n_3^*}|\theta)$ is the predicted probability for morphological transformation with $\{n_1^*, n_2^*, n_3^*\}$ and θ denotes the parameters of *F*.

• Consequently, the proposed self-supervised objective function to capture morphological features of normal data is as follows:

$$\min_{\theta} \frac{1}{3T} \sum_{j=1}^{T} \left(-\frac{1}{N_1} \sum_{n_1=1}^{N_1} \log \left(F^{n_1} (i^{n_1^*, n_2^*, n_3^*} | \theta) \right) - \frac{1}{N_2} \sum_{n_2=1}^{N_2} \log \left(F^{n_2} (i^{n_1^*, n_2^*, n_3^*} | \theta) \right) - \frac{1}{N_3} \sum_{n_3=1}^{N_3} \log \left(F^{n_1} (i^{n_1^*, n_2^*, n_3^*} | \theta) \right) \right)$$
where $F^{n_1} (i^{n_1^*, n_2^*, n_3^*} | \theta)$, $F^{n_2} (i^{n_1^*, n_2^*, n_3^*} | \theta)$, and $F^{n_3} (i^{n_1^*, n_2^*, n_3^*} | \theta)$ denote predicted probability for n_1^* , n_2^* , and n_3^* , respectively.

• Through the above formulation, we enforce the deep neural networks to learn morphological features of normal by predicting both transformation type and kernel size simultaneously.

Ι

Experimental results – implementation details

- In the experimental results, there are three types of the proposed method to **verify kernel** size learning's influence;
 - **Type 1**: $n_1 \in \{Erosion, Dilation, Gradient\}, n_2 \in \{1, 28, 56\}, n_3 \in \{1, 28, 56\}$
 - **Type 2**: $n_1 \in \{Erosion, Dilation, Gradient\}, n_2 \in \{8, 28, 56\}, n_3 \in \{8, 28, 56\}$
 - **Type 3**: $n_1 \in \{Erosion, Dilation, Gradient\}, n_2 \in \{1,8,28,56\}, n_3 \in \{1,8,28,56\}$
- PyTorch with RTX 2080Ti 11GB GPU and Intel i7 CPU.

Experimental results

• Comparison of AUROC (area under the receiver operating characteristic, %) performance

between [1] and the prop	osed algorithm in MVTec dataset.
--------------------------	----------------------------------

Class	bottle	cable	capsule	carpet	grid	hazelnut	leather
[1]	83.10	77.81	75.31	38.12	31.47	67.14	64.10
Ours-type 1	87.86	76.89	77.50	57.22	15.62	68.71	39.67
Ours-type 2	88.41	77.55	69.92	53.97	29.91	62.29	66.58
Ours-type 3	95.16	80.34	73.08	57.91	29.99	68.04	82.88
Class	pill	screw	tile	toothbrush	transistor	wood	average
[1]	62.17	27.73	52.13	82.73	88.25	84.30	64.18
Ours-type 1	50.60	28.06	84.70	93.33	77.92	85.44	63.17
Ours-type 2	51.72	46.96	92.71	70.22	84.04	90.96	66.19
Ours-type 3	57.23	61.86	93.58	91.67	83.29	87.37	72.92

[1] Golan, Izhak, and Ran El-Yaniv. "Deep anomaly detection using geometric transformations." Advances in Neural Information Processing Systems. 2018.

Conclusion

- The proposed method achieves superior performance in deep anomaly detection on industrial inspection by training the deep neural network to capture salient morphological features of normal data.
- The proposed algorithm can flexibly adapt to various real-world deep anomaly detection problem by choosing the adequate morphological transformation in image processing technology.
- Because the proposed methodology utilizes self-supervised learning, it has low computational complexity than other deep anomaly detection methods such as reconstruction-based algorithm.

1st International Electronic Conference on Applied Sciences

Thank You!

Deep Anomaly Detection via Morphological Transformations

Taehyeon Kim and Yoonsik Choe

Department of Electrical and Electronic Engineering,

Yonsei University

pyomu@yonsei.ac.kr

