

Self-assembly of nanoclusters in molybdenum blue dispersions in the presence of organic reducing agent

<u>Maria Myachina</u>*, Natalia Gavrilova, Daria Harlamova, Victor Nazarov *D. Mendeleev University of Chemical Technology of Russia, Moscow, Russia*

e-mail: <u>mmyachina@muctr.ru</u>

* Müller A., Serain C. Polyoxometalates: From Platonic Solids to Anti-Retroviral Activity // Acc. Chem. Res. 2000. V. 33. P. 2.

Perspective application of molybdenum blue dispersions

Catalytic hydrolysis of ethyl acetate**

*A. Tsuda, E. Hirahara, Y. – S. Kim, H. Tanaka. A molybdenum crown cluster forms discrete inorganic – organic nanocomposites with metalloporphyrins // Angew. Chem. Int. Ed. V. 43. 2004. P.6327. **S.-I. Noro, R. Tsunashima, Y. Kamiya. Adsorption and catalytic properties of the inner nanospace of a gigantic ring-shaped polyoxometalate Cluster//Angew. Chem. Int. Ed. V. 48. 2009. .P. 8703.

Synthesis of molybdenum blue dispersions

Synthesis of molybdenum blue dispersions

Synthesis conditions

Parameter	Reducing agent		
	Glucose	Hydroquinone	Ascorbic acid
Synthesis conditions			
Interval [R]/[Mo]	5,0-9,0	3,0-6,0	0,6 – 5,0
Interval [H ⁺]/[Mo]	0,5-0,8	1,0-4,0	0,5-1,0
Time proceeding			
Time to reach constant particle concentration, days	< 20	< 20	< 10
Time of maintaining a constant concentration of particles, days	> 60	< 10	> 30

Formation of molybdenum blue dispersions

(b)

DLS distribution (a) and TEM-image (b) of molybdenum blue particles, synthesized by using ascorbic acid. The electronic absorption spectrum of dispersion of molybdenum oxide clusters synthesized using various reducing agents: glucose (1), hydroquinone (2), ascorbic acid (3).

Formation of molybdenum blue dispersions Time effect

H/Mo

H/Mo

* Hydrodynamic radius is determined by dynamic light scaterring (Photocor Compact Z)

Nanocluster characterization I. Uv-Vis and FTIR - spectroscopy

FTIR spectra of molybdenum oxide clusters isolated from dispersions synthesized by using glucose

Band position, cm ⁻¹	Assignment		
3368s	ν(OHH)		
1620s	δ(H ₂ O)		
1406w	$\delta(NH_4^+)$		
973s, 904w	v(Mo=O)		
737s, 634m	ν (Mo- μ_2 O-Mo) or ν (Mo- μ_3 O-Mo)		
561s	δ(O-Mo-O)		

The electronic absorption spectrum of molybdenum oxide clusters isolated from dispersions synthesized using various reducing agents: glucose (1), hydroquinone (2), ascorbic acid (3).

Nanocluster characterization II. XPS spectroscopy

XPS spectrum of Mo (a) and O (b) of synthesized molybdenum clusters by using various reducing agents: glucose (a), hydroquinone (b), ascorbic acid (c).

* H. N. Miras, E.F. Wilson, L. Cronin Unravelling the complexities of inorganic and supramolecular self –assembly in solution with electrospray ana criospray mass spectroscopy // Chem. Communi. 2009.P.1297 – 1311.

Thank you for attention !

This research was funded by D. Mendeleev University of Chemical Technology, grant number 031 - 2020.