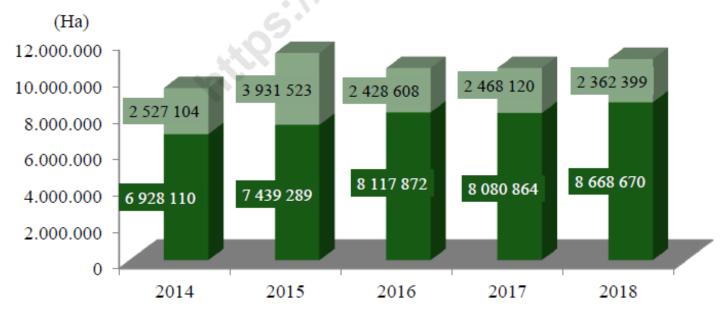


First report on infection of Eucalyptus pellita seeds by Ralstonia solanacearum

Bayo A. Siregar, Abdul Gafur, Pranita Nuri, and Budi Tjahjono



INDONESIAN FOREST PLANTATION

Land Area Held by Timber Culture Establishment (Ha), 2014 - 2018

- Perum Perhutani/Forest State Own & Perusahaan Lainnya/Other Estates
- HTI/ Timber Estate

Main Commodities: *Acacia*, *Eucalyptus*, *Shorea* spp., Teak, Pine, Mahogany

Photo by : foresteract.com

Forest plantations are able to reduce pressure on natural forests, quickly fix carbon and stimulate the restoration of natural vegetation.

Monoculture plantations are challenged to sustainably manage pest and disease risks.

- Ralstonia solanacearum is the main pathogen in many agricultural plants.
- It may cause significant losses on eucalyptus and was yet to be proven as a seed-transmitted pathogen.

This study aims to provide
evidence of the existence of the
R. solanacearum bacterium on or
in E. pellita seeds.

The Experiments

CONVENTIONAL DETECTION

Direct detection from seeds using universal and selective-media

NURSERY TEST

Detection on symptomless seedlings

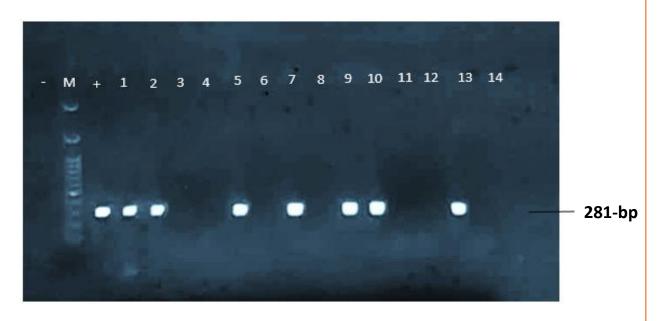
MOLECULAR Enrichment-PCR

PCR detection from seeds using Ralstonia-species complex specific primers

Bacterial wilt infection in eucalyptus seedlings is latent infection

Nursery Test

- Infection rate of symptomless seedlings by Ralstonia varies between 7 and 42%.
- These findings indicate the potential of bacterial wilt disease to be transmitted through seeds.



Seed Lot Number	Infection rate (%)	
12073	42.4	
12074	6.7 – 36.7	
12075	8.6 – 19.7	
12076	8.3	

Enrichment-PCR Results of Ralstonia detection from E. pellita seeds

Seed Lot Number	En-PCR Result ¹	
	Surface	Endosperm
EP15216AA5	+	+
EP15215AA5	-	-
EP15219AA5	+	-
EP15214AA5	+	-
EP15218AA5	+	+
EP15217AA5	-	-
EP15211AA5	+	-

¹ + : *R. solanacearum* is positively detected using En-PCR.

A positive result was determined from the position of the band matching the expected product length.

Two of the seven seed lot samples with surface-sterilization treatment were positive, an indication that the bacterial inoculum was present both on the surface of and inside the eucalyptus seeds (endosperm).

Conclusion

R. solanacearum can be detected from eucalyptus seeds using universal and selective media in the laboratory, nursery test, and molecular-based detection using the enrichment-PCR method.

The bacterial inoculum is also proven to exist both on the surface of and inside the eucalyptus seeds.

This is the first report that R. solanacearum is a seed-borne pathogen in E. pellita seeds.

