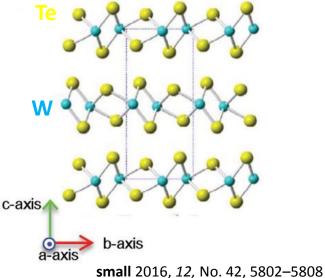


2nd International Online-Conference on Nanomaterials 15-30 NOVEMBER 2020 | ONLINE

Chemical Vapor Transport growth and characterization of WTe₂

Dimitre Dimitrov^{1,2}, Krastyo Buchkov^{1,2}, Vera Marinova¹, Velichka Strijkova¹, Marin Gospodinov²

¹ Institute of Optical Materials and Technologies, Bulgarian Academy of Sciences, Sofia, Bulgaria ² Institute of Solid State Physics, Bulgarian Academy of Sciences, Sofia, Bulgaria, Bulgaria


WTe₂ - a type-II Weyl semimetal material with extremely large magnetoresistance

Unique among TMDs as it crystallizes in a distorted 1T' phase (also known as Td phase). WTe_2 has orthorhombic crystal structure in contrast to the commonly observed 2H and IT structures.

In Td phase, the W-atoms are octahedrally coordinated by Te-atoms and the successive layers in between are rotated by 180°.

The unique electronic nature leads to:

- strong anisotropic electrodynamics,
- extremely large, non-saturated magnetoresistance,
- "negative" magnetoresistivity,
- room temperature ferroelectric semimetal, superconductivity and plasmon polariton activity

Numerous perspectives for topological, spintronic and opto-electronic applications.

Growth of WTe₂ single crystals: Challenges

Due to low chemical reaction activity of <u>Te with W</u>, WTe₂ is very challenging chemically, especially for various synthesis techniques as Chemical Vapor Deposition (CVD) and Molecular Beam Epitaxy (MBE).

The majority of contemporary WTe₂ studies aiming in 2D limit relied on mechanically-exfoliated samples from single crystals.

Necessity for an improvement of the synthesis and growth techniques for preparation of high quality crystals closer to the structural perfection.

nanomaterials

Growth of WTe₂ single crystals by Chemical Vapor Transport (CVT)

- A mixture containing stoichiometric amounts of W and Te powder was slowly heated from RT to 920°C for 12 h, and held at 920°C for 3 days in a sealed evacuated quartz ampoule.
- WTe₂ single crystals were grown from the synthesized powder by CVT with Br₂ as transport agent for 14-21 days in a sealed evacuated quartz ampoule with source and growth zones kept at 895°C and 715°C, respectively.
- The obtained bulk crystals were pumped under dynamic vacuum at RT for 1 day to remove any residual Br.

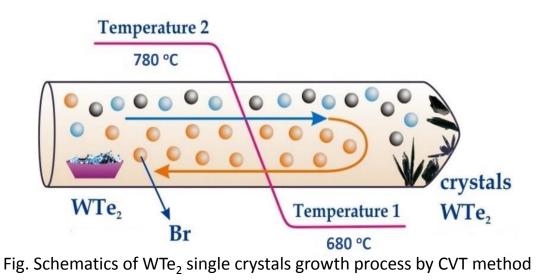


Fig. Photograph of WTe_2 single crystals

XRD and Raman analysis

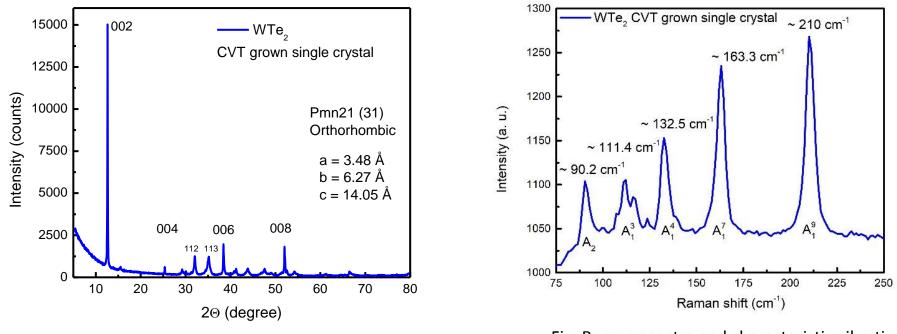


Fig. XRD analysis of WTe₂ single crystals

Fig. Raman spectra and characteristic vibration modes for WTe₂ single crystal

- X-ray powder diffraction (XRD) patterns confirms that WTe₂ crystallizes in space group P_{mn}21 in orthorhombic Td structure.
- Raman shows typical vibrational modes for WTe₂ detected at: A₁⁹ ~ 210 cm⁻¹, A₁⁷ ~ 163 cm⁻¹, A₁⁴ ~ 132 cm⁻¹, A₁³ ~ 111 cm⁻¹ and A₂ ~ 90 cm⁻¹ confirming the desired chemical composition.

AFM analysis

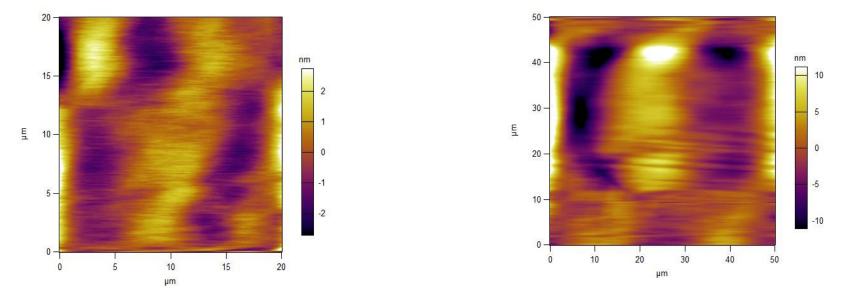


Fig. AFM analysis of two separate sectors from WTe₂ single crystal surface topology.

- AFM data revealed that the surface topology is close to the structural perfection even on a nanoscale level (RMS roughness relief varies within 1 nm to 4 nm).
- This is a fine verification of the quality of the crystal which will be suitable for further alterations as mechanical exfoliation for instance.

Conclusion

- Detailed description of the preparation stages, technical considerations and growth procedure of WTe₂ by means of Chemical Vapor Transport method are presented.
- Performed XRD and Raman spectroscopy analysis verified excellent crystallinity of WTe₂
- The surface topology via AFM analysis with construction of topography 2D map revealing a few nanometers variation of the morphology features.

Acknowledgements

H2020-FETPROACT-01-2018 Grant Agreement 824140

Research equipment of infrastructure INFRAMAT (Bulgarian National roadmap) supported by Bulgarian Ministry of Education and Science, D01-284/17.12.2019.

