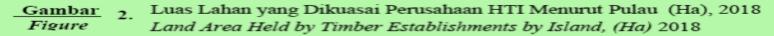
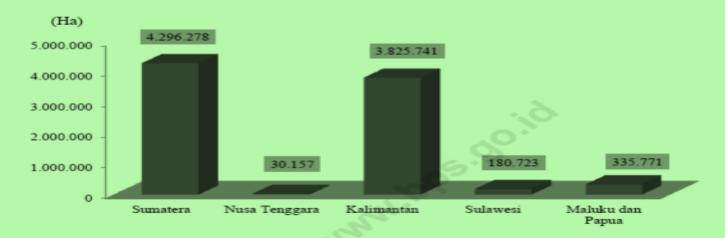

Development of biocontrol agents to manage major diseases of tropical plantation forests in Indonesia: A review

IECF Seminar November 2020


Abdul Gafur SMF Corporate R&D Indonesia



Plantation forests: Land areas

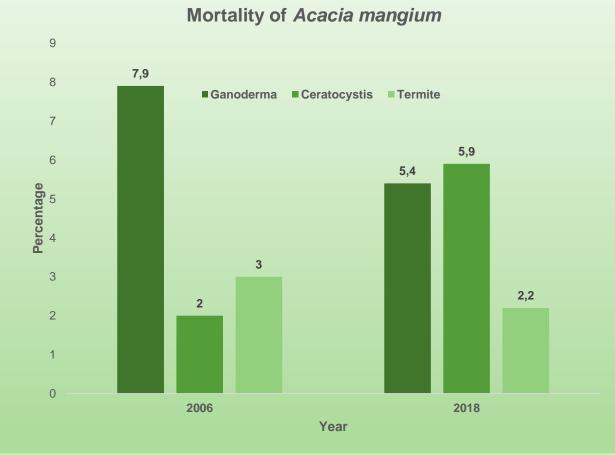
(BPS 2019)

Plantation forests: Log production and contribution

(BPS 2019)

Jenis Komoditas Utama

Perusahaan HTI

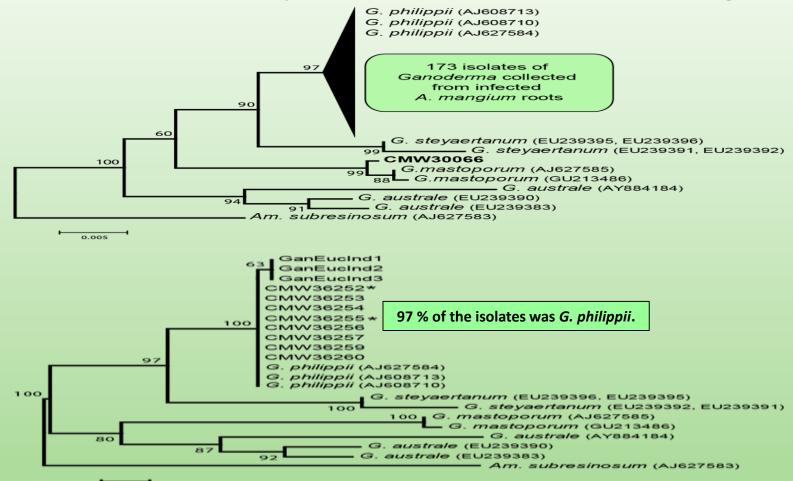

Main Commodities

Akasia/Acacia : 77,53%

In 2018, Forestry Sector contributed USD 12,17 Billion to the country's income (http://ppid.menlhk.go.id/siaran_pers/browse/1724).

Red root rot on Acacia mangium: Significance

- In Indonesia (3-5 years) 2nd-rotation plantations incidence is 3-28 % (Irianto et al., 2006).
- In the Philippines (6-10 years), mortality is 10-25 % (Militante and Manalo, 1999).
- In India (9-14 years), mortality is ~40 % (Mehrotra et al., 1996).
- In Malaysia (14 years), mortality is up to 40 % (Lee, 2000).


For. Path. 44 (2014) 447–459 © 2014 Blackwell Verlag GmbH

doi: 10.1111/efp.12141

Disease progression in plantations of *Acacia mangium* affected by red root rot (*Ganoderma philippii*)

By A. Francis¹, C. Beadle^{1,2}, D. Puspitasari³, R. Irianto⁴, L. Agustini⁴, A. Rimbawanto³, A. Gafur⁵, E. Hardiyanto⁶, Junarto⁷, N. Hidyati³, B. Tjahjono⁵, U. Mardai⁸, M. Glen¹ and C. Mohammed^{1,9}

Red root rot in plantation forests: Pathogen

0.01

Southern Forests: a Journal of Forest Science

Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/tsfs20

A single dominant *Ganoderma* species is responsible for root rot of *Acacia mangium* and *Eucalyptus* in Sumatra

M PA Coetzee ^a , B D Wingfield ^a , G D Golani ^b , B Tjahjono ^b , A Gafur ^b & M J Wingfield

Red root rot in plantation forests: Pathogen

- Ganoderma philippii is the dominant pathogen of root rot diseases in plantation forests in Indonesia.
- Other fungi isolated include G. mastoporum, Phellinus noxius, Tinctoporellus epimiltinus, and Rigidoporus microporus.

Forest Pathology (Bulackwell

doi: 10.1111/efp.12146

For. Path. 44 (2014) 496–508 © 2014 Blackwell Verlag GmbH

Identification of basidiomycete fungi in Indonesian hardwood plantations by DNA barcoding

By M. Glen^{1,6}, V. Yuskianti², D. Puspitasari², A. Francis¹, L. Agustini³, A. Rimbawanto², H. Indrayadi⁴, A. Gafur⁵ and C. L. Mohammed¹

Challenge

1 kg of prevention is better than 1 ton of cure.

Utilization of resistant genotypes

Southern Forests: a Journal of Forest Science

Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/tsfs20

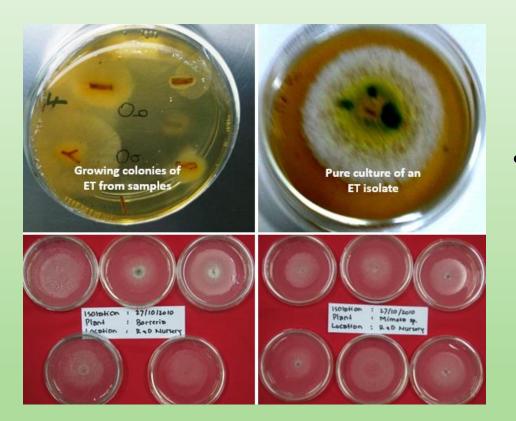
A new screening method for Ganoderma philippii tolerance in tropical Acacia species

Abdul Gafur^a, Aswardi Nasution^a, Muhammad Yuliarto^a, Wong Ching Yong^a & Mukesh Sharma^a

Root rot biocontrol: Gliocladium and Trichoderma

Root Rot Pathogen	Biocontrol Agent	In Vivo or In Situ	Reference
Ganoderma lucidum	Trichoderma harzianum	In vitro	Bhaskaran (2000)
	Trichoderma harzianum	In vitro	Dharmaputra et al. (1989)
Ganoderma boninense	Trichoderma spp.	In situ	Soepena et al. (2000)
	Gliocladium viride	In situ	Susanto et al. (2005)
Ganoderma spp.	Trichoderma spp.	In vitro	Widyastuti (2006)
Phellinus weirii	Trichoderma viride	In situ	Nelson et al. (1995)
	Trichoderma polysporum, T. harzianum	In situ	Berglund and Ronnberg (2004)
Armillaria sp.	Trichoderma sp.	Both	Hagle and Shaw (1991)
	Trichoderma harzianum, T. viride, T. hamatum	Both	Raziq and Fox (2006)

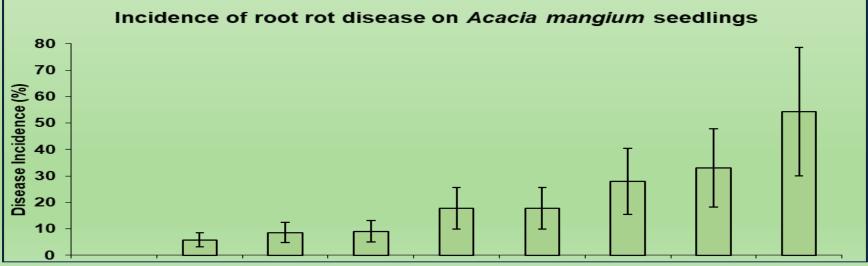
Free-living (rhizospheric) Trichoderma


(Gafur et al. 2011a; 2011b)

- Free-living *Trichoderma* isolates lack consistency in the field. Isolates with excellent inhibitory effects in laboratory tests, may not be a good performer in the field.
- In addition, they are not necessarily equally good in different environments.

Endophytic Trichoderma (ET)

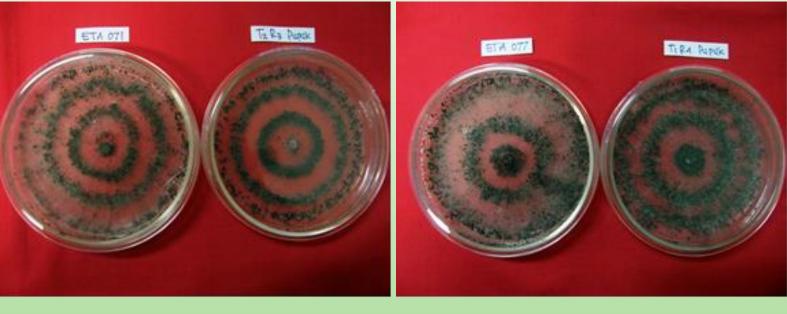
(Gafur et al. 2015a)



- Endophytic *Trichoderma* may persist in the root of host plants through the rotation, providing hope for future disease management.
- More than 200 isolates of endophytic *Trichoderma* from different 33 plant species are isolated from a range of ecosystems. The collection cultures morphologically varies. They are subjected to nursery screening trials for future possible commercial seedling inoculation.

ET nursery screening trial

(Gafur et al. 2015a)



Different isolates of endophytic Trichoderma

ET re-isolation from roots of treated plantations

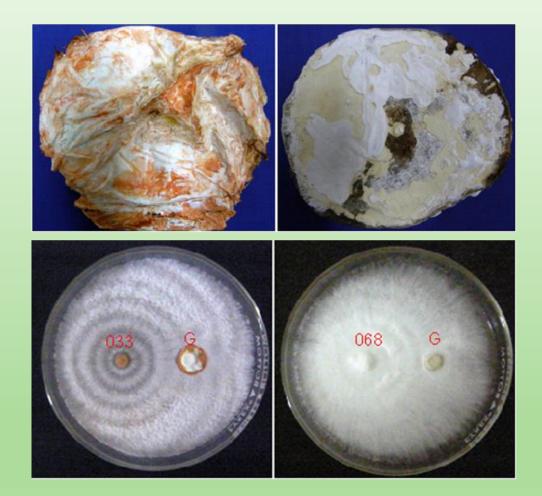
(Gafur et al. 2015a)

Α

В

Colonies of isolates A and B originated from laboratory pure culture (left) and *Acacia mangium* root isolation (right).

Root rot biocontrol: Phlebiopsis and Cerrena


(Nurrohmah et al. 2019)

- *Phlebiopsis gigantea* is widely used to control *Heterobasidion annosum*.
- In vitro tests reveal antagonism of *Phlebiopsis* and *Cerrena* against *Ganoderma* and *Phellinus*.
- They are then applied onto stumps to prevent colonization by the pathogens.

Root rot biocontrol: Other white rot fungal species

(Sitompul et al. 2011)

- 107 samples are collected from various origins and localities in Sumatra.
- Of the 107 samples, 79 are isolated (51 samples were from fruiting bodies, 28 from rotten woods).
- The newly isolated fungi then undergo three screening processes using wood block, wood disc, and culture medium.

BWD biocontrol: Endophytic bacteria

- Bacterial wilt disease (BWD) has emerged as an economically important disease of eucalypt plantations in Indonesia.
- A consortium of endophytic bacteria has been developed to manage BWD.
- The product reduces disease risk and prolongs incubation period.

Conclusions

- 1. Pests and diseases are likely to continuously challenge plantation forests in Indonesia.
- 2. As one key component of integrated disease management, biocontrol agents provide a significant contribution to the effort.
- 3. Development of effective biological controls should focus more on consortium of locally more adapted and compatible microorganisms.
- 4. Introduction of endophytic microbes into the scenario should be encouraged.

Acknowledgements

- CFBTI (BBPPBPTH), Indonesia
- Lincoln University, New Zealand
 - PT Arara Abadi, Indonesia
 - PT MHP, Indonesia
 - PT RAPP, Indonesia
- University of Tasmania, Australia

Thank you, stay safe and healthy!

#tanamansehatIndonesiakuat!