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Abstract: Resonant modes are important characteristics of the optical properties of photonic crystals 

since they are responsible for the features in the transmission and reflection spectra, as well as the 

emissivity of quantum emitters inside such structures. We present a resonant modes expansion 

method applied to a problem of radiating dipoles inside of a photonic crystal. In stacked photonic 

crystal slabs, there is a coupling between resonances of distinct subsystems and Fabry-Perot 

resonances. We propose a technique to calculate coefficients of resonant mode expansion based on 

the scattering matrix formalism of the Fourier modal method (FMM). The method appears to be 

convenient since it does not require rigorous normalization of resonant fields or application of 

perfectly matched layers. Then we demonstrate the agreement between the resonant modes 

expansion results and exact FMM solutions. 
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1. Introduction 

Resonant modes are intrinsic properties of an electromagnetic structure, that are of significant 

interest in modern electrodynamics and optics due to a great variety of potential applications. 

Resonances determine light-matter interaction, scattering properties of a structure, emission 

properties, optical activity, and many others [1]. Such modes are defined as nonzero solutions of 

Maxwell’s equations without any electromagnetic wave sources. For open systems with losses, 

resonant energies have a nonzero negative imaginary part. It has been shown previously [2–4], that 

resonant field distributions and resonant mode expansion coefficients could be obtained using an 

iterative scattering matrix pole search method. Nevertheless, this method was not applied to the 

problem of electromagnetic waves emission for dipoles inside photonic stacked systems. An ability 

to provide a resonant modes expansion for such a problem allows one to find positions inside a 

photonic system in which a dipole can excite a resonance in the most effective way. Once the 

resonances of lower and upper parts are known, it is very convenient to calculate the scattering and 

radiation emission matrices of the stacked system in a sufficient energy range without direct FMM 

application. This can highly increase the calculation speed so one can choose any desired energy mesh 

step size for the resolution of the narrowest peculiarities of spectral data. Moreover, such combined 

system consideration gives an additional comprehension of how subsystem resonances couples to 

produce resonances of the whole system. This could also lead to the better arranged photonic system 

design because coupled and uncoupled due to some specific geometry resonances could lead to 

strong optical effects such as the transmission of radiation asymmetry, modulated quality factor, etc. 
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As was shown in the paper [5], dipole approximation is an effective tool for the description of small 

plasmonic particles, which cannot be adequately included in FMM calculation without a 

prohibitively large number of Fourier harmonics included. Thus, the resonant mode expansion 

application to a dipole emission can make a significant contribution to a variety of optical and 

electromagnetic problems. This article aims to present such an approach based on the direct resonant 

expansion of the scattering matrix and therefore does not employ normalization of divergent 

resonant fields [1,6,7]. 

2. Methods 

Let us consider a metal-dielectric structure consisting of two parts A and B that are periodic in x 

and y directions. It is necessary to determine the amplitude of the outward radiation created by 

dipoles harmonically oscillating in a thin layer between parts A and B. In case one already knows 

scattering matrices of the upper and lower subsystems (Sa and Sb respectively), it is enough to set the 

input amplitudes equal to zero, calculate the field discontinuities near the plane of the dipoles 

according to Maxwell equations, and add the condition for maintaining the amplitude in a closed 

passage inside the structure. Then the relation between the vector of amplitude discontinuities near 

the dipole plane and outgoing wave amplitudes is [8,9] (see Figure 1 for details and wave amplitudes 

notation) 

 
(1) 

Here the radiation emission matrix Bout is constructed from subblocks of scattering matrices: 
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We use the following notation: 

𝔻1 = (1 − S𝑑𝑢
𝑎 S𝑢𝑑

𝑏 )
−1

𝔻2 = (1 − S𝑢𝑑
𝑏 S𝑑𝑢

𝑎 )
−1 (3) 

Although this is the full answer, it does not provide any information about resonances and 

coefficients of their excitation. For the derivation of coupled resonant modes, one should apply the 

standard technique to calculate the resonances of the upper and lower subsystems separately [3,4]. 

Scattering matrices of these systems break into a nonresonant slowly varying part and sum over 

resonant contributions: 

 

(4) 

There are no incoming waves, so we should put d1, u3 = 0. Using notation α-n and β+n for the 

coefficients of resonant modes excitation of the subsystems, we arrive at the equation 

 

(5) 

We also need to include Fabry-Perot modes in the coupling model, which could be found from 

the following equation [10]: 
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(6) 

This equation has a simple physical meaning. Fabry-Perot modes of an open system are 

governed by nonresonant reflections of the upper and lower subsystems and have complex energies 

to maintain wave amplitudes after a circular passage inside the whole structure in the presence of no 

electromagnetic wave sources. To derive poles of the inverse matrix M-1 one should apply the same 

procedure as for resonant expansion of the S-matrix 

 

(7) 

Finally, combining the Equations (5) and (7) we can derive the coupled resonances and 

expansion coefficients that describe how the new resonant modes of the whole system are presented 

by the modes of the subsystems. 

 

Figure 1. Schematic description of the system under consideration. The system is divided into upper 

A and lower B subsystems by the red layer denoting the plane of dipole sources. The optical properties 

of the subsystems are described by scattering matrices Sa and Sb. The upper structure is a waveguide 

with a 1D grating on the top of it and an air gap of thickness on the bottom, while the lower structure 

is a waveguide with an air gap on the top. Amplitudes of Fourier harmonics are identified as d and u 

for waves propagating from top to bottom and backward respectively; subscripts 1, 2 and 3 

correspond to amplitudes right above the upper surface of the whole structure, near the dipoles and 

right under the lower surface. Due to the presence of the dipoles, the magnetic field must be 

discontinuous and so are the wave amplitudes designated with + and – in the superscript directly 

above and under the source. 

3. Results 

For validation purposes, we decided to calculate an emission of a dipole source from a coupled 

system of a simple waveguide on the bottom and a waveguide with a 1D grating corrugation on the 

top (Figure 1). The structure has the following properties: both waveguides and the grating are made 

of an isotropic material with a permittivity chosen to be ε = 2.25 + 0.001i, so it is quite close to a crone 
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glass or SiO2 permittivity in a near-infrared range. The grating period is p = 0.7 μm, the width of 

grating slits is a = 0.3 μm, the grating thickness and the thickness of the upper waveguide are hgr = 

h(top)wg = 0.3 μm. The lower waveguide has the thickness twice as large as the upper one h(bot)wg = 0.6 

μm. Two waveguides are separated by an air gap and the whole structure is also surrounded by air. 

The dipoles are located in the middle between the upper and lower waveguides at a distance of 100 

nm from them. We have calculated the transmission spectra in the energy range of 1200–1450 meV 

with conventional FMM, the results are shown in Figure 2. 

 

Figure 2. Transmission spectra of the upper A (waveguide and grating surrounded by air) and lower 

B (single waveguide in the air) structures calculated with conventional FMM. Red and blue solid lines 

correspond to transmission from top to bottom of s- and p-polarized electromagnetic plane waves in 

the structure A, while black crosses and magenta dotted line correspond to transmission from top to 

bottom in the structure B in s- and p-polarization. 

As the upper and lower structures are only different by the periodic corrugation, one can see 

how this periodicity changes the transmission spectrum of a waveguide superimposing well-

pronounced dips. Then we calculate the poles of scattering matrices of these two structures by the 

described previously technique and retrieve the transmission using the resonant modes expansion. 

For s- and p-polarized plane waves the retrieval results are presented in Figure 2. 

Finally, we derive Fabry-Perot resonances and calculate dipole emission in the main optical 

channel using the resonance coupling method. We also compare these results to the emission spectra 

calculated simply using the Bout matrix. One can find quite satisfying agreement in Figure 3. 

  
(a) (b) 
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Figure 3. Real (red solid lines) and imaginary (blue solid lines) parts of the top to bottom transmission 

in the A subsystem calculated with the conventional FMM and using the resonant modes expansion 

(black crosses and circles) for (a) p-polarized, (b) s-polarized plane waves. 

  
(a) (b) 

Figure 4. aCalculated spectra of the emission in the main channel with s-polarization in (a) top and 

(b) bottom directions of the oscillating dipole sources. For simplicity, the source is taken to be a plane 

with uniform current density polarized in the same plane at an angle of 45 degrees to the slits of the 

grating. Solid blue lines correspond to the results obtained with the conventional FMM; black crosses 

correspond to the coupled resonant modes approach. The intensity is normalized to the maximum 

radiation intensity of an equivalent harmonically oscillation current source (with the same magnitude 

and the same frequency) in free space. 

4. Discussion 

We have shown that the coupling resonance method is an effective tool for the derivation of 

optical modes that are combinations of the separated subsystem resonances and Fabry-Perot 

resonances. Good convergence with traditional FMM has been observed. One can confidently use 

this method to resolve narrow spectral peculiarities with a sufficiently small computational effort, 

once the resonances of the subsystems and Fabry-Perot resonances are known. Moreover, this 

method does not require normalization of modes due to the natural dyadic form presented in our 

approach. 
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