Abstract: A single paragraph of about 200 words maximum. For research articles, abstracts should give a pertinent overview of the work. We strongly encourage authors to use the following style of structured abstracts, but without headings: (1) Background: Place the question addressed in a broad context and highlight the purpose of the study; (2) Methods: Describe briefly the main methods or treatments applied; (3) Results: Summarize the article’s main findings; and (4) Conclusions: Indicate the main conclusions or interpretations. The abstract should be an objective representation of the article, it must not contain results which are not presented and substantiated in the main text and should not exaggerate the main conclusions.

Keywords: perovskite; photocatalysis; g-\(\text{C}_3\text{N}_4\); \(\text{CO}_2\); quantum dots

1. Introduction

At present, a large number of fossil fuel consumption has led to a series of energy shortages and environmental problems [1,2]. As the main combustion product, carbon dioxide (\(\text{CO}_2\)) is the main contributor to climate warming, which is usually discharged into the atmosphere without treatment. In order to alleviate the above environmental problems, people are committed to the capture, storage and utilization of \(\text{CO}_2\) [3–6]. Using \(\text{CO}_2\) as a carbon source to synthesize valuable products is considered to be an effective way to solve the problems of climate warming and energy shortage [7–9]. In the current process of energy conversion, the photocatalytic reduction of \(\text{CO}_2\) light into high-energy products is considered a sustainable, green, but challenging strategy [10–12].

As a polymeric photocatalyst composed of earth-abundant elements, graphitic carbon nitride (g-\(\text{C}_3\text{N}_4\)) with nontoxicity, excellent physical/chemical stability, appropriate energy band, and low cost has emerged as a rather promising candidate for photocatalytic degradation [13–15], photocatalytic \(\text{H}_2\) evolution [16–19], photocatalytic \(\text{CO}_2\) reduction [20–22] and so on. However, due to the rapid recombination and the low mobility of photogenerated charge carriers, relatively narrow visible light responsive region, and the small specific surface area, the photocatalytic performance of bulk g-\(\text{C}_3\text{N}_4\) with highly stacked layers is not ideal [23]. Therefore, in order to improve the photocatalytic performance, many methods (such as: element doping, constructing heterostructures and morphology control) have been proposed to promote the transport and separation of photogenerated carriers and increase the specific surface area [24,25]. Recently, due to the control of molecular structure, the introduction of anions into the g-\(\text{C}_3\text{N}_4\) framework has been shown to significantly enhance the intrinsic activity of g-\(\text{C}_3\text{N}_4\) [23]. Nonmetal doping not only increases the separation rate...
of photogenerated charge carrier, but also enhances the visible-light absorption of g-C₃N₄ [26]. Previous research has mainly focused on single-element doping. However, compared with single-element doping, two non-metallic atoms doped into g-C₃N₄ simultaneously have higher photocatalytic activity and unusual physical and chemical properties. Furthermore, the photocatalytic performance of g-C₃N₄ can be improved by changing the bulk g-C₃N₄ into the layered g-C₃N₄ structure, which is due to the larger specific surface area and more exposed active sites of the layered structure [27–29].

Lead halide perovskite materials have attracted wide interest in photovoltaic and optoelectronic applications due to their unique optical properties [30]. In recent years, due to its visible light absorption, high extinction coefficient, long electron and hole diffusion length, halide perovskites have become ideal materials for optoelectronic applications, especially in photovoltaic devices [31] and light emitting diode [32]. Recently, because lead halide perovskite has a suitable energy band structure, it has also been widely studied as a photocatalytic material for photocatalytic H₂ evolution [33,34] and photocatalytic CO₂ reduction [35,36]. However, the conversion efficiency of pristine lead halide perovskite is not ideal due to the rapid recombination of electron hole pairs, the lack of active centers and chemical instability. Heterostructure integrated lead halide perovskite and ultra-thin two-dimensional (2D) material with high specific surface area, rich active centers and strong interface contact, is a very attractive photocatalyst of photocatalytic CO₂ reduction. It’s well known that the transfer and separation of photogenerated charge is the key issue in the process of photocatalysis.

Herein, we use a facile method to generate CsPbBr₃ in situ on S doped g-C₃N₄ (CPB/USCN). The CPB/USCN photocatalyst exhibited high photocatalytic CO₂ reduction under visible light. In addition, the detailed structure of CPB/USCN and a possible photocatalytic mechanism are discussed through experiments and characterization results.

2. Result and Discussion

The structure of the catalyst is characterized by TEM. As shown in Figure 1a, it can be seen that the small particle size CsPbBr₃ is loaded on the surface of ultra-thin g-C₃N₄ nanosheets to form the composite. In addition, it can be clearly seen from Figure 1b that the lattice fringes of a are 0.41 nm, corresponding to (101) plane of cubic CsPbBr₃. The morphology of CPB/USCN is further characterized by AFM. As shown in Figures 1d and e, the thickness of the sheet is about 2.5 nm, which strongly proves the formation of ultrathin layered structure. In addition, it is clear from Figure 1c,f that the composite is successfully formed, and the properties of CsPbBr₃ and g-C₃N₄ do not change after forming the composite.
Figure 1. TEM (a) and HRTEM image (b). AFM of ultra-thin S doping g-C3N4 (d, e). XRD patterns (c) and FTIR spectra (f) of as-prepared samples.

The photocatalytic CO2 reduction efficiency of CPB, CN, SCN, and CPB/USCN is evaluated under visible light irradiation. As shown in Figure 2a, the CPB/USCN exhibits the highest photocatalytic activity, which is due to the formation of heterostructures and S doping. In addition, as shown in Figure 2b, the stability of the photocatalyst is also evaluated. After 4 cycles, it still maintained good photocatalytic performance, which indicated that the photocatalyst had good photocatalytic stability. Based on the above results, a possible photocatalytic mechanism is proposed. As shown in Figure 3, CsPbBr3 and S-doping g-C3N4 form type II heterojunction. Under visible light irradiation, photogenerated electrons transfer from the conduction band of CsPbBr3 to the conduction band of USCN, and holes transfer from the valence band of USCN to the valence band of CsPbBr3. The formation of heterostructure promotes the separation and transmission of photogenerated carriers. Through the formation of heterojunction and S doping to suppress the recombination of carriers, better photocatalytic performance is obtained.

Figure 2. The photocatalytic CO2 reduction rate of as-prepared samples (a). The cycle stability experiment (b).
3. Conclusions

The novel CsPbBr$_3$ quantum dots/S doping g-C$_3$N$_4$ ultrathin nanosheet 0D/2D heterojunctions photocatalyst were prepared by loading perovskite quantum dots onto the surface of ultrathin doped g-C$_3$N$_4$. The strategy of S element doping improved the properties of in g-C$_3$N$_4$ ultra-thin structure providing more adsorption and reaction sites for photocatalytic CO$_2$ reduction activity.

4. Method

Bulk g-C$_3$N$_4$ was synthesized by calcining melamine S doping g-C$_3$N$_4$ ultra-thin nanosheets was synthesized by secondary calcination melamine and thiourea. The CsPbBr$_3$/S doping g-C$_3$N$_4$ ultra-thin nanosheets heterostructure was fabricated by an in-situ thermal injection method.

Conflicts of Interest: The authors declare no conflict of interest.

References

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© 2020 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).