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1. Introduction  

At present, a large number of fossil fuel consumption has led to a series of energy shortages and 

environmental problems [1,2]. As the main combustion product, carbon dioxide (CO2) is the main 

contributor to climate warming, which is usually discharged into the atmosphere without treatment. 

In order to alleviate the above environmental problems, people are committed to the capture, storage 

and utilization of CO2 [3–6]. Using CO2 as a carbon source to synthesize valuable products is 

considered to be an effective way to solve the problems of climate warming and energy shortage [7–

9]. In the current process of energy conversion, the photocatalytic reduction of CO2 light into high-

energy products is considered a sustainable, green, but challenging strategy [10–12].  

As a polymeric photocatalyst composed of earth-abundant elements, graphitic carbon nitride (g-

C3N4) with nontoxicity, excellent physical/chemical stability, appropriate energy band, and low cost 

has emerged as a rather promising candidate for photocatalytic degradation [13–15], photocatalytic 

H2 evolution [16–19], photocatalytic CO2 reduction [20–22] and so on. However, due to the rapid 

recombination and the low mobility of photogenerated charge carriers, relatively narrow visible light 

responsive region, and the small specific surface area, the photocatalytic performance of bulk g-C3N4 

with highly stacked layers is not ideal [23]. Therefore, in order to improve the photocatalytic 

performance, many methods (such as: element doping, constructing heterostructures and 

morphology control) have been proposed to promote the transport and separation of photogenerated 

carriers and increase the specific surface area [24,25]. Recently, due to the control of molecular 

structure, the introduction of anions into the g-C3N4 framework has been shown to significantly 

enhance the intrinsic activity of g-C3N4 [23]. Nonmetal doping not only increases the separation rate 
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of photogenerated charge carrier, but also enhances the visible-light absorption of g-C3N4 [26]. 

Previous research has mainly focused on single-element doping. However, compared with single-

element doping, two non-metallic atoms doped into g-C3N4 simultaneously have higher 

photocatalytic activity and unusual physical and chemical properties. Furthermore, the 

photocatalytic performance of g-C3N4 can be improved by changing the bulk g-C3N4 into the layered 

g-C3N4 structure, which is due to the larger specific surface area and more exposed active sites of the 

layered structure [27–29].  

Lead halide perovskite materials have attracted wide interest in photovoltaic and optoelectronic 

applications due to their unique optical properties [30]. In recent years, due to its visible light 

absorption, high extinction coefficient, long electron and hole diffusion length, halide perovskites 

have become ideal materials for optoelectronic applications, especially in photovoltaic devices [31] 

and light emitting diode [32]. Recently, because lead halide perovskite has a suitable energy band 

structure, it has also been widely studied as a photocatalytic material for photocatalytic H2 evolution 

[33,34] and photocatalytic CO2 reduction [35,36]. However, the conversion efficiency of pristine lead 

halide perovskite is not ideal due to the rapid recombination of electron hole pairs, the lack of active 

centers and chemical instability. heterostructure integrated lead halide perovskite and ultra-thin two-

dimensional (2D) material with high specific surface area, rich active centers and strong interface 

contact, is a very attractive photocatalyst of photocatalytic CO2 reduction. It’s well known that the 

transfer and separation of photogenerated charge is the key issue in the process of photocatalysis. 

Herein, we use a facile method to generate CsPbBr3 in situ on S doped g-C3N4 (CPB/USCN). The 

CPB/USCN photocatalyst exhibited high photocatalytic CO2 reduction under visible light. In 

addition, the detailed structure of CPB/USCN and a possible photocatalytic mechanism are discussed 

through experiments and characterization results. 

2. Result and Discussion 

The structure of the catalyst is characterized by TEM. As shown in Figure 1a, it can be seen that 

the small particle size CsPbBr3 is loaded on the surface of ultra-thin g-C3N4 nanosheets to form the 

composite. In addition, it can be clearly seen from Figure 1b that the lattice fringes of a are 0.41 nm, 

corresponding to (101) plane of cubic CsPbBr3. The morphology of CPB/USCN is further 

characterized by AFM. As shown in Figures 1d and e, the thickness of the sheet is about 2.5 nm, which 

strongly proves the formation of ultrathin layered structure. In addition, it is clear from Figure 1c,f 

that the composite is successfully formed, and the properties of CsPbBr3 and g-C3N4 do not change 

after forming the composite. 
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Figure 1. TEM (a) and HRTEM image (b). AFM of ultra-thin S doping g-C3N4 (d,e). XRD patterns (c) 

and FTIR spectra (f) of as-prepared samples. 

The photocatalytic CO2 reduction efficiency of CPB, CN, SCN, and CPB/USCN is evaluated 

under visible light irradiation. As shown in Figure 2a, the CPB/USCN exhibits the highest 

photocatalytic activity, which is due to the formation of heterostructures and S doping. In addition, 

as shown in Figure 2b, the stability of the photocatalyst is also evaluated. After 4 cycles, it still 

maintained good photocatalytic performance, which indicated that the photocatalyst had good 

photocatalytic stability. Based on the above results, a possible photocatalytic mechanism is proposed. 

As shown in Figure 3, CsPbBr3 and S-doping g-C3N4 form type II heterojunction. Under visible light 

irradiation, photogenerated electrons transfer from the conduction band of CsPbBr3 to the conduction 

band of USCN, and holes transfer from the valence band of USCN to the valence band of CsPbBr3. 

The formation of heterostructure promotes the separation and transmission of photogenerated 

carriers. Through the formation of heterojunction and S doping to suppress the recombination of 

carriers, better photocatalytic performance is obtained. 

 

Figure 2. The photocatalytic CO2 reduction rate of as-prepared samples (a). The cycle stability 

experiment (b). 
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Figure 3. Possible photocatalytic mechanism under visible light irradiation. 

3. Conclusions 

The novel CsPbBr3 quantum dots/S doping g-C3N4 ultrathin nanosheet 0D/2D heterojunctions 

photocatalyst were prepared by loading perovskite quantum dots onto the surface of ultrathin doped 

g-C3N4. The strategy of S element doping improved the properties of in g-C3N4 ultra-thin structure 

providing more adsorption and reaction sites for photocatalytic CO2 reduction activity.  

4. Method 

Bulk g-C3N4 was synthesized by calcining melamine S doping g-C3N4 ultra-thin nanosheets was 

synthesized by secondary calcination melamine and thiourea. The CsPbBr3/S doping g-C3N4 ultra-

thin nanosheets heterostructure was fabricated by an in-situ thermal injection method. 
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