
proceedings

Proceedings

Fast Biexciton Preparation in a Quantum Dot Using
On-Off Pulses †

Dionisis Stefanatos * and Emmanuel Paspalakis

Materials Science Department, School of Natural Sciences, University of Patras, 26504 Patras, Greece
* Correspondence: dionisis@post.harvard.edu
† Presented at the 2nd International Online-Conference on Nanomaterials, 15–30 November 2020;

Available online: https://iocn2020.sciforum.net/.

Published: 15 November 2020
����������
�������

Abstract: We study the efficient creation of biexciton state in a quantum dot using laser pulses,
when starting from the ground state, and show that a simple on-off-on pulse-sequence can prepare
the target state faster than the frequently used constant and hyperbolic secant pulse profiles. The pulse
durations in the sequence are obtained from the solution of a transcendental equation. We also use
numerical optimization to show that the suggested pulse-sequence creates the biexciton state at the
quantum speed limit of the system.

Keywords: semiconductor quantum dots; biexciton; quantum control; coherent control; quantum
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1. Introduction

Controlling with lasers pulses the exciton and biexciton states in semiconductor quantum dots is
an important research field which has attracted considerable attention, since these systems offer an
advantageous solid state platform for the implementation of quantum information technologies [1].
A basic problem in this area is the efficient generation of the biexciton state, when starting from
the ground state of the quantum dot [2–6]. Usually, this transition is achieved by applying a
linearly-polarized laser pulse with constant or hyperbolic secant profile [2].

Here we present results which suggest that a simple on-off-on modulation of the pulse shape [7],
where the durations of the on-off segments can be found by solving a transcendental equation,
can efficiently generate the biexciton state faster than the frequently used constant and hyperbolic
secant pulses. Additionally, numerical optimization confirms that the suggested pulse-sequence
generates the biexciton state at the quantum speed limit (minimum possible time) of the system, at
least for the broad range of maximum pulse amplitude values used in our simulations.

The structure of the paper is as follows. In the next section we briefly describe the basic
methodology followed in this research, while in Section 3 we present results which support our
statement about the fast preparation of biexciton state. Section 4 concludes this work.

2. Methods

The Hamiltonian of the biexciton system in the dipole approximation is

HB(t) = E|1〉〈1|+ (2E + EB)|2〉〈2| − µESQD(t)(|0〉〈1|+ |1〉〈2|+ H.c.), (1)

where |0〉, |1〉, and |2〉 denote the ground, exciton, and biexciton states, respectively, E is the exciton
energy (the ground state energy is set to zero), EB is the biexciton energy shift, µ is the dipole moment
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of the semiconductor quantum dot for both the ground-exciton and exciton-biexciton transitions,
and ESQD is the electric field inside the semiconductor quantum dot

ESQD(t) =
h̄
µ

[
Ω(t)

2
e−iωt + H.c.

]
. (2)

The time-dependent Rabi frequency Ω(t) is the control function used to create the biexciton state
starting form |0〉 and without loss of generality is take to be real, while ω is the angular frequency of
the laser.

Using the transformed probability amplitudes b0 = c0, b1 = c1eiωt, b2 = c2e2iωt, fixing the laser
frequency at the two-photon resonance value h̄ω = E + EB/2 and performing the rotating wave
approximation, we find the transformed Hamiltonian

H̃B(t) = h̄

 0 −Ω∗
2 0

−Ω
2 − EB

2h̄ −Ω∗
2

0 −Ω
2 0

 . (3)

A further transformation

a0 =
1√
2
(b2 + b0), a1 = b1, a2 =

1√
2
(b2 − b0), (4)

leads to ȧ2 = 0, while a0, a1 satisfy the two-level system

i

(
ȧ0

ȧ1

)
=

(
0 − Ω√

2
− Ω√

2
− EB

2h̄

)(
a0

a1

)
. (5)

The ground state initial conditions c0(0) = 1, c1(0) = c2(0) = 0, same for bi, give a0(0) =

1/
√

2, a1(0) = 0, a2(0) = −1/
√

2. But a2(t) = a2(0) = −1/
√

2 is constant, and from Equation (4)
we see that if the control Ω(t) is selected such that at the final time t = T it is a0(T) = −1/

√
2,

then b2(T) = −1 ⇒ |c2(T)| = 1 and the biexciton state is perfectly prepared. The two-level state
(a0 a1)

T is normalized with 1/
√

2 instead of the usual 1, thus a1(T) = 0. It becomes obvious that the
control Ω(t) should be chosen such that the initial and final states of the two-level system (5) differ by
a π-phase, and this imposes the following condition on the propagator U of the system:

U =

(
−1 0
0 indif.

)
. (6)

For a constant pulse Ω(t) = Ω0 with duration T, propagator U can be easily found to be

U = eiωBT

(
cos ωT − inz sin ωT −inx sin ωT
−inx sin ωT cos ωT + inz sin ωT

)
, (7)

where

ω =

√
ω2

B +
Ω2

0
2

, nx = − 1√
2

Ω0

ω
, nz =

ωB
ω

. (8)

Using condition (6) we can find the duration and amplitude of the fastest constant pulse which
completely generates the biexciton state.

T =
π

ωB
, Ωmin

0 = ωB
√

6 ≈ 2.45ωB. (9)
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This pulse and the corresponding time-evolution of the biexciton population |c2(t)|2 are depicted
in Figures 1a,b, respectively.

For the hyperbolic secant pulse profile, Ω(t) = Ω0 sech (t/tp), with tp corresponding to the pulse
width, we apply the Rosen-Zener method [8] to the two-level system (5), which is also described in
Ref. [2]. Following this approach, one can show that the width and amplitude of the shortest hyperbolic
secant pulse which achieves complete biexciton preparation are

tp =

√
3

2
1

ωB
, Ω0 = 4

√
2
3

ωB. (10)

The corresponding pulse is displayed in Figure 1c, and the time evolution of |c2(t)|2 in Figure 1d.
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Figure 1. (a,b) Minimum-duration constant pulse, preparing the biexciton state in time T = π/ωB,
and corresponding evolution of population |c2(t)|2. (c,d) Shortest-width hyperbolic secant pulse
achieving complete biexciton preparation, and corresponding evolution of population |c2(t)|2.
(e,f) Minimum-time on-off-on pulse-sequences, for the same maximum amplitude as in the hyperbolic
secant pulse, and corresponding evolution of population |c2(t)|2. We plot both pulse-sequences,
with interchanged the first and last on-pulses, which accomplish biexciton preparation in the
same duration.



Proceedings 2020, 0, 5 4 of 6

3. Results and Discussion

As we previously explained, the two-level system should comes back to its starting state having
obtained a π-phase. It turns out that a pulse-sequence of the form on-off-on is the simplest one to
achieve this, since the first on-pulse removes the Bloch vector from the north pole, the intermediate
off-pulse rotates it parallel to the equator, and the final on-pulse brings it back to the north pole. Let ti,
i = 1, 2, 3 be the durations of these pulses. In order to find the minimum possible total duration
T = t1 + t2 + t3 such that the π-phase condition is satisfied, we follow a new methodology along the
lines of Ref. [7], which exploits the fact that in each time interval the Hamiltonian of the two-level
system is constant. This way we find that the duration t2 of the middle off-pulse should satisfy the
transcendental equation

tan
[

ω(
π

2ωB
− t2)

]
= −nz tan ωBt2, (11)

the durations of the initial and final on-pulses are given in terms of t2 by the following expressions

t1 =
π

2

(
1

ωB
∓ 1

ω

)
− t2, t3 =

π

2

(
1

ωB
± 1

ω

)
− t2, (12)

while the total duration is
T = t1 + t2 + t3 =

π

ωB
− t2. (13)

In the above relations, ω, nz are given in Equation (8).
The expressions with the ± signs in Equation (12) indicate that the durations of the initial and

final on-pulses can be interchanged. For the transcendental equation (11) to have at least one solution,
the pulse-sequence amplitude should be larger than the threshold value Ωmin

0 = ωb
√

6, which is found
by setting t2 = 0. We focus our attention in the range Ω0 > Ωmin

0 , since such values can be easily
obtained in experiments and also lead to durations T < π/ωB, the shorter duration achieved with a
constant pulse. Note that for larger Ω0, Equation (11) can have more solutions, in which case we pick
the larger t2, corresponding to the shorter total duration T = π/ωB − t2. For very large values of Ω0,
the shortest duration tends to the limiting value π/(2ωB).

We present a specific example where Ω0 = 4
√

2/3ωB, the maximum amplitude of the hyperbolic
secant pulse profile that was used in the previous section. The corresponding solution of transcendental
Equation (11) is t2 = 0.3861/ωB, resulting in a total duration T = π/ωB− t2 ≈ 2.7555/ωB. In Figure 1e
we show the two symmetric pulse-sequences corresponding to the values of t1, t3 from Equation (12),
with cyan dashed-dotted line for the upper sign (smaller t1) and magenta dashed line for the lower
sign (larger t1). In Figure 1f we plot the time dependence of biexciton population |c2(t)|2 for the two
cases. Now the biexciton state is prepared in much shorter duration compared to the hyperbolic secant
case, shown in Figure 1d, requiring a time of about 4/ωB.

In Figure 2 we show with blue solid line the duration T of the minimum-time on-off-on
pulse-sequence for maximum amplitude values in the interval

√
6 ≤ Ω0/ωB ≤ 45. When Ω0 = ωB

√
6

then T = π/ωb, while for large Ω0 the duration tends to π/(2ωb). We next use the numerical optimal
control solver BOCOP [9], to find the quantum speed limit [10] (minimum necessary time) for complete
preparation of the biexciton state, for specific representative values of the maximum amplitude Ω0.
In each run the control is bounded as 0 ≤ Ω(t) ≤ Ω0. For each value of Ω0 used, the corresponding
quantum speed limit obtained numerically is plotted also in Figure 2 with a red square. From this plot
becomes obvious that, at least for amplitudes Ω0 in the considered range, the speed limit coincides
with the duration of the corresponding minimum-time on-off-on pulse-sequence.
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Figure 2. The blue solid line represents the duration of the minimum-time on-off-on pulse-sequence,
as a function of maximum amplitude Ω0. The red squares correspond to the quantum speed limit
obtained with numerical optimal control, for various values of Ω0.

4. Conclusions

We studied the problem of pulsed biexciton state preparation in a quantum dot and showed that,
when using a on-off-on pulse-sequence with carefully selected pulse durations, the desired state can
be reached faster than with the frequently used constant and hyperbolic secant pulses. Additionally,
using numerical optimization, we showed that the suggested pulse-sequence prepares the target state
at the quantum speed limit (minimum time needed) for a wide range of the maximum pulse amplitude.
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