

The 6th International Electronic Conference on Medicinal Chemistry (ECMC 2020) 01–30 NOVEMBER 2020 | ONLINE

Chaired by DR. JEAN JACQUES VANDEN EYNDE

Advanced preclinical studies in Canine Leishmaniasis drug development.

Cintya Perdomo^a, Elena Aguilera^b, Ileana Corvo^a, Paula Faral-Tello^c, Elva Serna^d, Carlos Robello^{c, e}, Shane R. Wilkinson^f, Gloria Yaluff^d, Guzmán Alvarez^a,*

aLaboratorio de Moléculas Bioactivas, Universidad de la República, CENUR Litoral Norte, 60000 Paysandú, Uruguay.

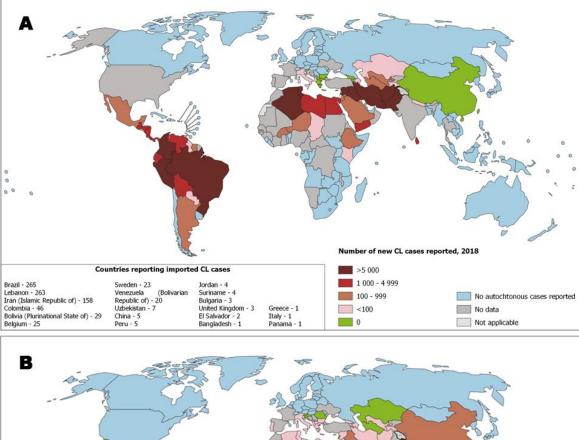
bGrupo de Química Medicinal-Laboratorio de Química Orgánica, Facultad de Ciencias, Universidad de la República, Montevideo, C.P. 11400, Uruguay.

cUnidad de Biología Molecular, Institut Pasteur de Montevideo, Montevideo, C.P. 11400, Uruguay.

dDepartamento de Medicina Tropical, Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Asunción, San Lorenzo, C.P. 2169., Paraguay.

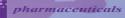
eDepartamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.

fQueen Mary Pre-Clinical Drug Discovery Group, School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom.


*Corresponding author. Laboratorio de Moléculas Bioactivas, CENUR Litoral Norte, Universidad de la República, Ruta 3 (km 363), Paysandú, C.P. 60000, Uruguay. E-mail address: guzmanalvarezlqo@gmail.com (G. Alvarez).

				_
HIT314	HIT1019	HIT796	HIT266	
S N N N N N N N N N N N N N N N N N N N		s s s s s s s	S C C C	Stop dog culling
Activ	vity <i>in vitro</i> anti- <i>T. cruzi</i> ((multiple strains)	I	
IC50 0.72 μM amastigotes	IC50 0.60 μM epimastigotes	IC50 5.0 μM epimastigotes	IC50>0.25 μM Amastigotes	
Selectivit	y index >100 (IC50 mamm	alian cell/IC50 T. cru	zi)	
Mechanism of action				
Cruzipain IC₅04.3 µM	TcTIM IC50 86 nM	unknown	unknown	
Stability	<i>in vitro</i> (microsomal, pla	sma, other solution	ns)	
high	low	Moderate	high	
	Toxicology and ef	ficacy		
	Negative Ames Test (nor	n-mutagenic)		
Negative micronucleus test (non-genotoxic)				
LD ₅₀ 2000 mg/kg				
Full control of the parasite	emia <i>in vivo</i> at 50 mg/kg i	n the murine mod	el of Chagas disease	

sponsored: MDPI



Countries reporting Number of new VL cases reported, 2018 imported VL cases >1 000 Uganda - 64 Ethiopia - 49 United Kingdom - 2 500 - 999 Vorld Health Brazil - 6 Colombia - 1 No autochtonous cases reported 100 - 499 Jordan - 1 Greece - 2 rganization Lithuania - 1 Italy - 2 No data <100 Portugal - 1 Nepal - 2 Not applicable Sweden - 2 Saudi Arabia - 1 0

Canine Leishmaniasis have not : A robust diagnostic method, A efficient vaccine A efficient drug The control of the vector is not easy, it cannot be controlled by insecticides. It is a zoonotic disease, when the first case of canine leishmaniasis arrive, few years later arrives the human cases.

6th International Electronic Conference on Medicinal Chemistry 1-30 November 2020

A <u>dog culling</u> strategy is not supportable along the time for several reasons:

1) no reliable body of scientific evidence supports the effectiveness for disease control,

2) alternative reservoir hosts may play a role in maintaining the life cycle of L. infantum, like foxes,

hares, armadillos, wild boars, cats and rabbits.

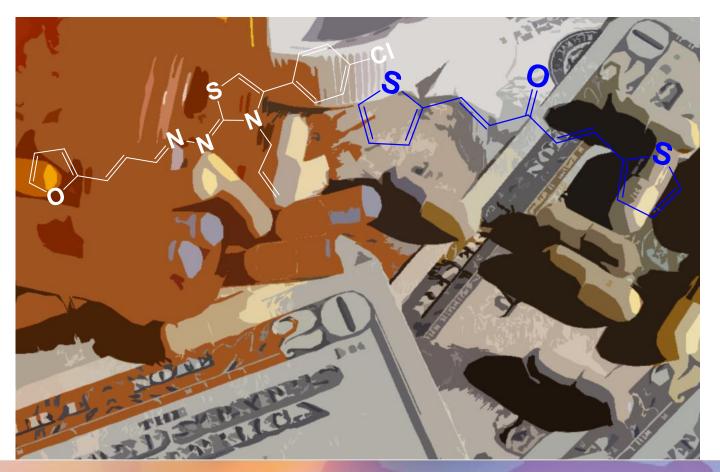
3) culled dogs are rapidly replaced with young dogs that are often more susceptible to primary infection.

4) serologic diagnostic tools often used for screening dogs as part of a culling program have limitations in terms of sensitivity and specificity.

5) dog culling is not a cost-effective, valid alternative from a socioeconomic perspective (e.g., drugs for euthanasia) to government institutions.

Then, the use of dog culling as a strategy to reduce the incidence of Visceral Leishmaniasis in humans cannot be justified and should no longer be used it is successfully used for outbreak controls in short terms of time.

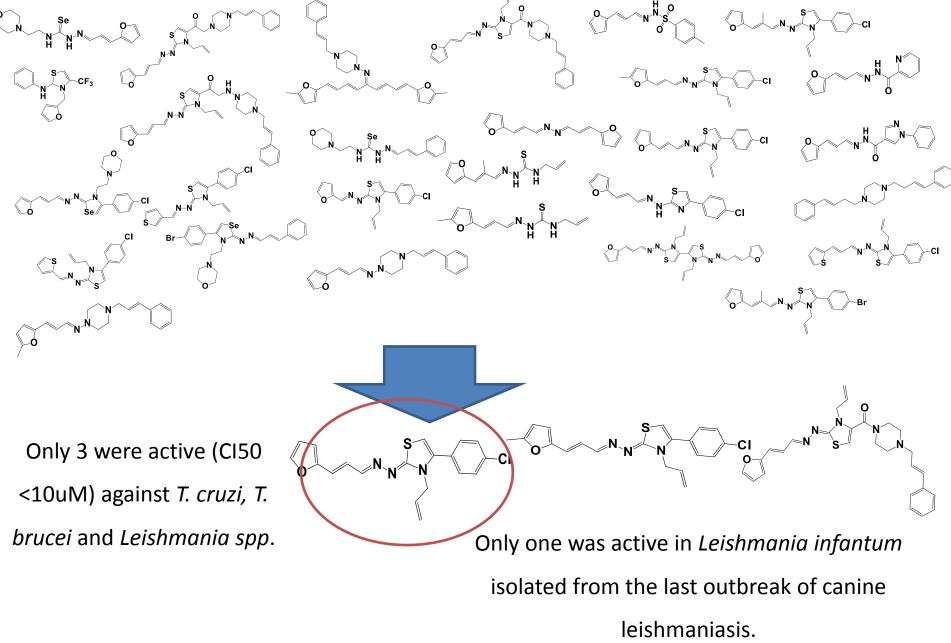
pharmaceuticals


sponsored: MDP

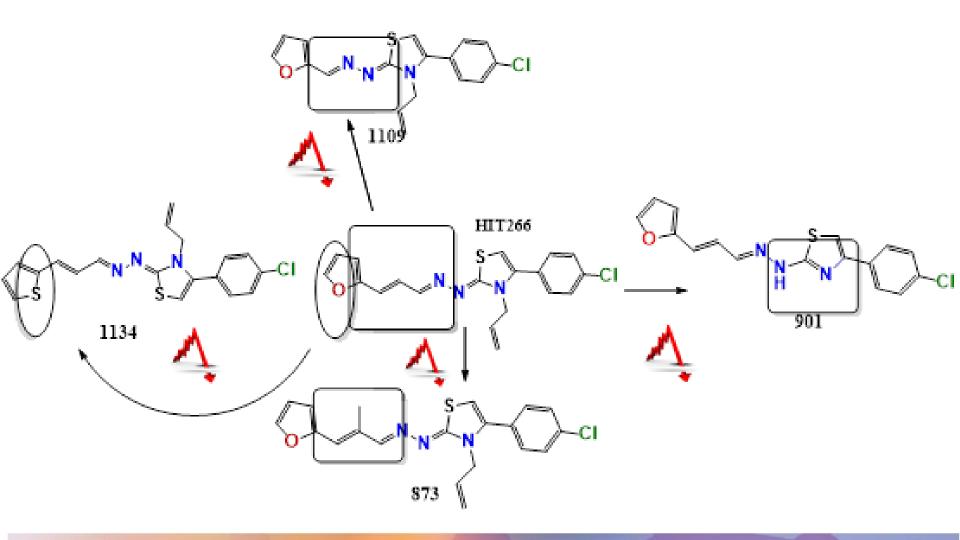
Low cost drug development

Because there is a neglected disease, and also because is for veterinary use.

Then we are looking for low cost and easy production compounds: THIAZOLIDENE HYDRAZINES and CURCUMINOIDS

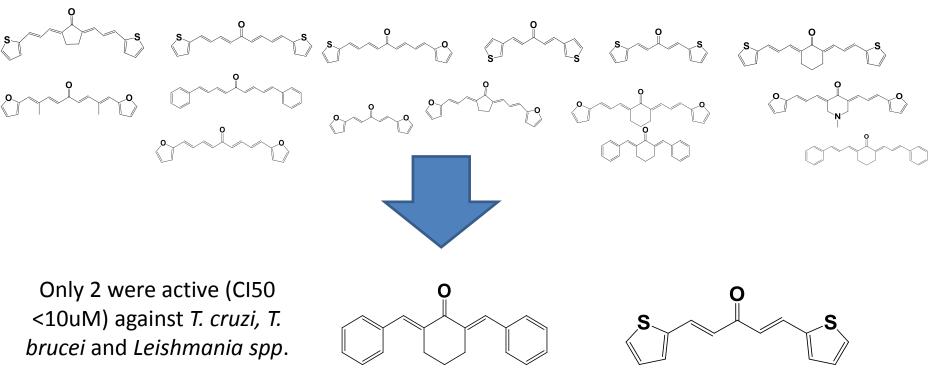


6th International Electronic Conference on Medicinal Chemistry 1-30 November 2020


sponsored: M

<u>29</u> hydrazines were characterized against *Leishmania spp*, selected from our background in *T. cruzi*.

Structure-Activity analysis. Interpretation of the possible pharmacophore.



6th International Electronic Conference on Medicinal Chemistry 1-30 November 2020

sponsored: MDPI

<u>14</u> curcuminoids were characterized against *Leishmania spp*, selected from our background in *T. cruzi*.

And also active in *Leishmania infantum* isolated from the last outbreak of canine leishmaniasis.

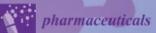
6th International Electronic Conference on Medicinal Chemistry 1-30 November 2020

sponsored:

Toxicology background

Structure	Chemical collection code	IC50 ± %DE (µM) Macrophages	Ames Test	Genotoxicity in mice	LD50 in mice (mg/kg)
	HIT266**	60±6	negative	negative	>2000
	872	66±7	negative	nd	nd
	HIT314	30±5	negative	negative	>2000
	795	115±2	positive	nd	Nd
	809	33±8	negative	nd	Nd
	1223	19±6	negative	nd	Nd
S S S	796**	38±7	negative	negative	>2000
	799**	115±8	negative	nd	>2000

sponsored: MDPI



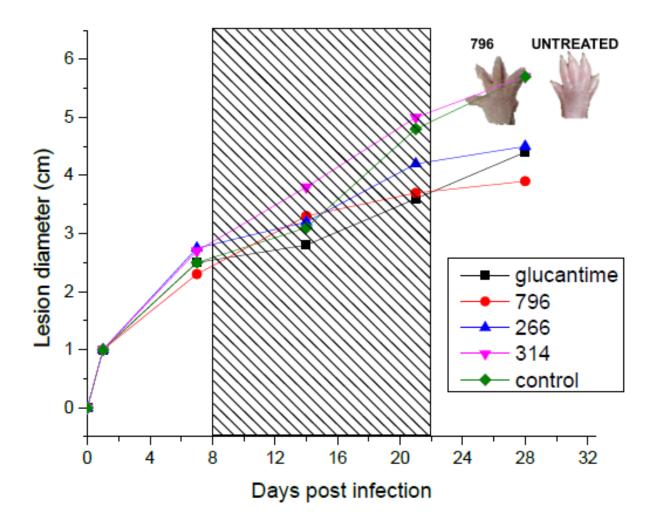
Pharmacokinetic background

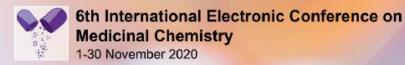
Solubility (mg/mL)	Gastrointestinal absorption	BBB permeability	Penetrability of the skin (cm/s)	Bioavailability	Lipophilicity (LogP)	Stability in S9 rat fraction at 4hs
1.9 x10 ⁻³	low	no	-4.0	0.55	3.8	no
2.3	high	no	-7.2	0.55	0.5	yes
3.5 x10 ⁻³	high	no	-6.3	0.55	4.2	yes
2.2x10 ⁻³	high	no	-5.2	0.55	4.8	yes
3.9x10 ⁻²	high	yes	-5.3	0.55	3.7	yes
2.6 x10 ⁻³	high	yes	-4.4	0.55	4.5	no

sponsored: MDPI

PROOF OF CONCEPT

In vivo test in the murine cutaneous leishmaniasis model for the lead compounds.


Compound	Doses mg/kg	Doses µmol/kg	Treatment duration in days	Administration	% parasite suppression*
796	50	203	14	Oral	55
314	50	102	14	Oral	10
266	50	135	14	Oral	30
796/314/266	5/25/25	20/50/68	14	Oral	43
Glucantime	100	273	14	Subcutaneous	40
Control	0	0	14	Oral	0


* percentage of parasites in the inoculated paw of the mouse at the end of the experiment, concerning the control mouse

Weekly evolution of the diameter of the infected paw of mice.

sponsored: MDPI

Conclusions

Of the 50 compounds evaluated from our chemical collection, we conclude that 3 of the leading compounds (**796**, **266**, **314**), were found to have good antiparasitic activity in different species of trypanosomatids. Furthermore, these molecules have low nonspecific cytotoxic effects and did not show genotoxic or mutagenic effects. In addition to these encouraging results, they are safe, showing 100% survival in the acute toxicity model *in vivo*.

Compound **796** was the most promising compound with effective control of the Leishmania parasite infection *in vivo*. Also, the synergic effect was observed between the two chemical groups (curcuminoids and thiazolidene hydrazines). Taken together, the results obtained encourage us to continue with the clinical phase of experimentation in dogs of our leading compounds.

sponsored: MDP

Funding: This research was funded by CSIC (Comisión Sectorial de Investigación Científica) I+D 2016 program number ID435 (grant).

Acknowledgments:

6th International Electronic Conference on Medicinal Chemistry 1-30 November 2020

sponsored: MDF