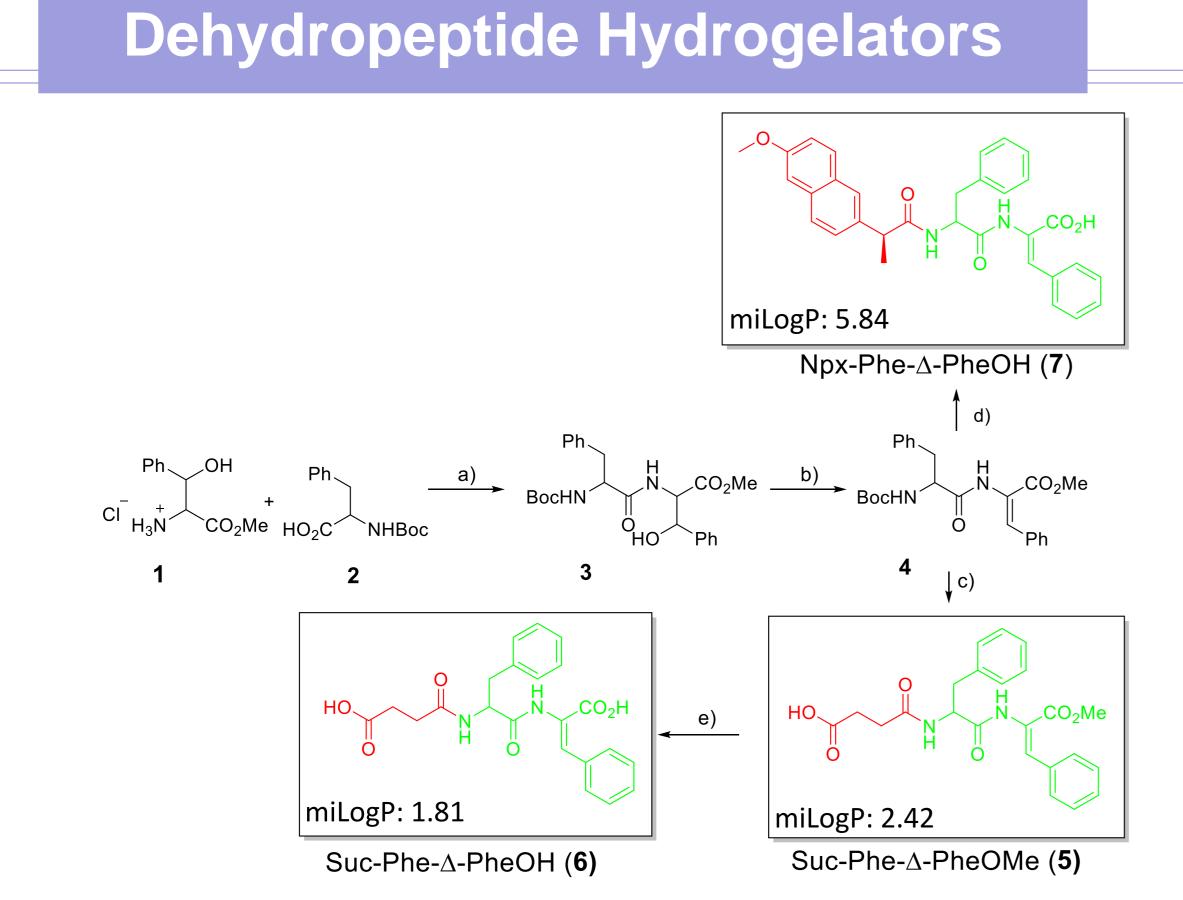


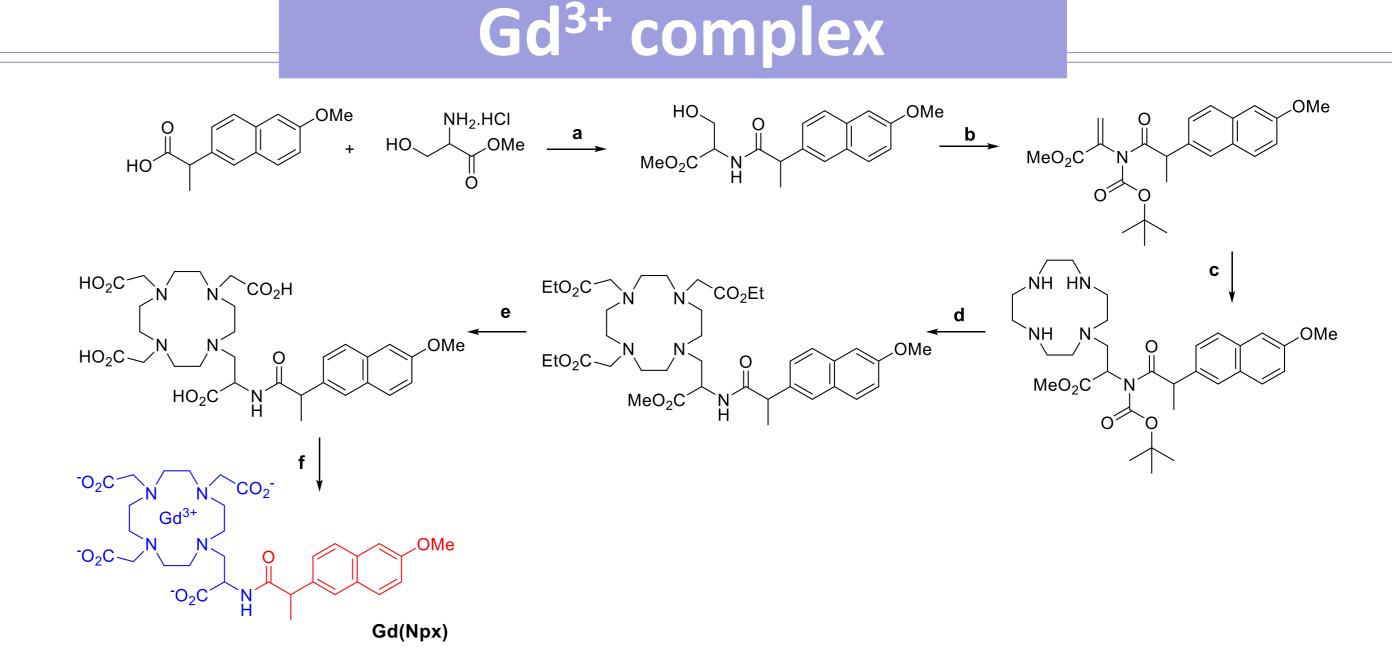
Universidade do Minho Escola de Ciências

Dehydropeptide-based self-assembled hydrogels with incorporated Gd³⁺ chelates: potential Contrast Agents for MRI?

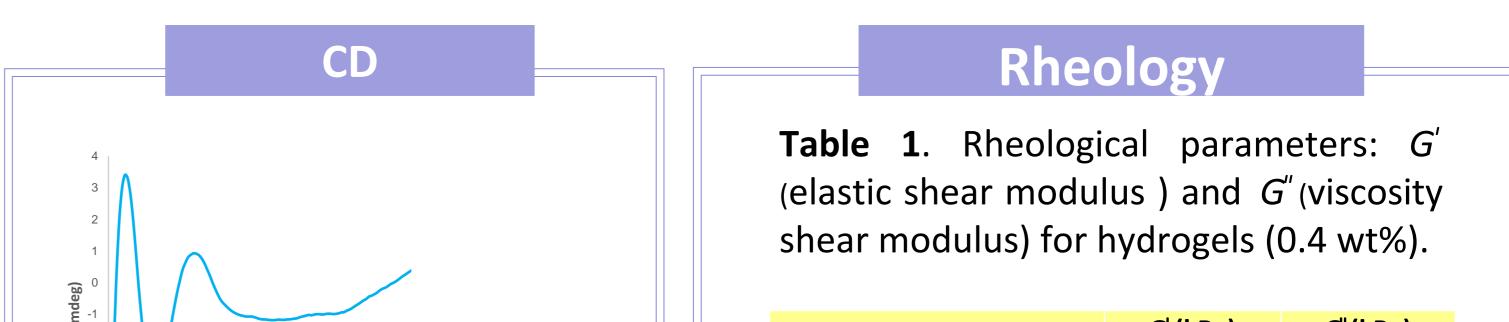

Teresa Pereira^a, Juan Gallo^b, Manuel Bañobre-López^b, Loic Hilliou^c, Paula M.T. Ferreira^a and José A. Martins^a

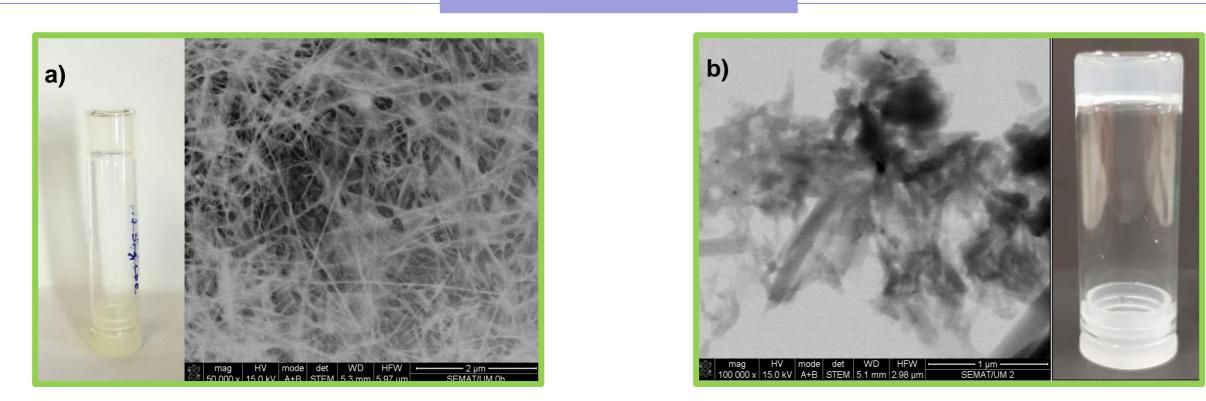
^aCentre of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; jmartins@química.uminho.pt
^bInternational Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga s/n, 4715- 330 Braga, Portugal
^cInstitute for Polymers and Composites, Department of Polymer Engineering, University of Minho, Campus de Azurém,
4800-058 Guimarães, Portugal

Introduction


- * Self-assembled peptide-based hydrogels (SAPH) are the new paradigm biomaterials: soft biocompatible materials with an entangled nanofibrillar structure reminiscent of the extracellular matrix.
- Dehydropeptides N-capped with Naproxen (Npx, a NSAID drug) are non-toxic to cells, show enhanced stability towards proteolysis and originate self-assembled hydrogels displaying rheological properties suitable for biomedical applications.
- Dehydropeptide-based hydrogels revealed suitable nanocarriers for drug delivery applications.
- Incorporation of Superparamagnetic Iron Oxide Nanoparticles (SPION) endows dehydropeptide-based hydrogels with hyperthermia and T_{2w} MRI reporting properties Magnetogels.
- Preliminary results from our research group suggest that Gd³⁺ complexes incorporated into dehydrodipeptide-based hydrogels retain T_{1w}MRI reporting properties.
- In this work we report novel dehydrodipeptide hydrogelators N-capped with succinic acid: Suc-Phe-Δ-PheOMe and Suc-Phe-Δ-PheOH.

* The dehydropeptide hydrogels with an incorporated Gd³⁺ complex are characterised as potential Contrast Agents for MRI.




Figure 1: General methodology for the synthesis of dehydrodipeptides: a) HBTU, TEA, MeCN; b) i. Boc₂O/DMAP, MeCN, ii. TMG; c) i. TFA, ii. anhydride succinic, pyirdine; d) i. TFA, ii. Naproxen chloride, TEA; e) NaOH 1M; dioxane.

STEM

Figure 2. Synthetic pathway for the synthesis of the Gd(Npx) complex: a) DCC/HOBT, TEA, DCM; b) $Boc_2O/DMAP$, MeCN; c) Cyclen, $K_2CO_3/MeCN$; d) i. TFA/DCM; ii. K_2CO_3 , MeCN; iii. ethyl bromoacetate; e) i. Dowex-1X2-OH⁻ H₂O/EtOH; ii. elution with HCl (0,1M); f) GdCl₃.

Figure 3. STEM images of hydrogels: a) Npx-Phe- Δ -PheOH (**7**) (0.4 wt%); b) Suc-Phe- Δ -PheOMe (**5**) (0.4 wt%).

Conclusions

- New dehydropeptides N-capped with succinic acid were synthetized following synthetic pathways developed by the research group.
- A new DOTA-type Gd³⁺ complex (Gd(Npx) functionalized with a naproxen (Npx) moiety was synthesized for incorporation into the dehydropeptide-based self-assembled hydrogels.
- The dehydrodipeptides Suc-Phe-Δ-PheOMe and Npx-Phe-Δ-PheOH afford elastic hydrogels with a fibrillar nanostructure at 0.4 wt% (4mg/ml) concentration. The Suc-Phe-Δ-PheOH hydrogelator fails to gelate at 0.4 wt%, presumably due to low hydrophobicity (LogP: 1.81).
- The CD spectra of the hydrogels suggest that the peptide backbone adopts predominantly a random coil secondary structure in the self-assembled nanofibers.
- * The higher elasticity of the Npx-Phe- Δ -PheOH hydrogel in comparison with the Suc-Phe- Δ -PheOMe hydrogel can be ascribed to π - π stacking interactions of the bulky aromatic naproxen group.

-2 -3 -4 -5	V					Suc-PheDPhe wt%)	OMe (0.01	
-6 190	210	230 wavele	250 ength (ni	270 m)	290			
Figure		4:	С	D	spe	ectrum	for	
hydrogelator Suc-Phe-Δ-PheOMe (5)								

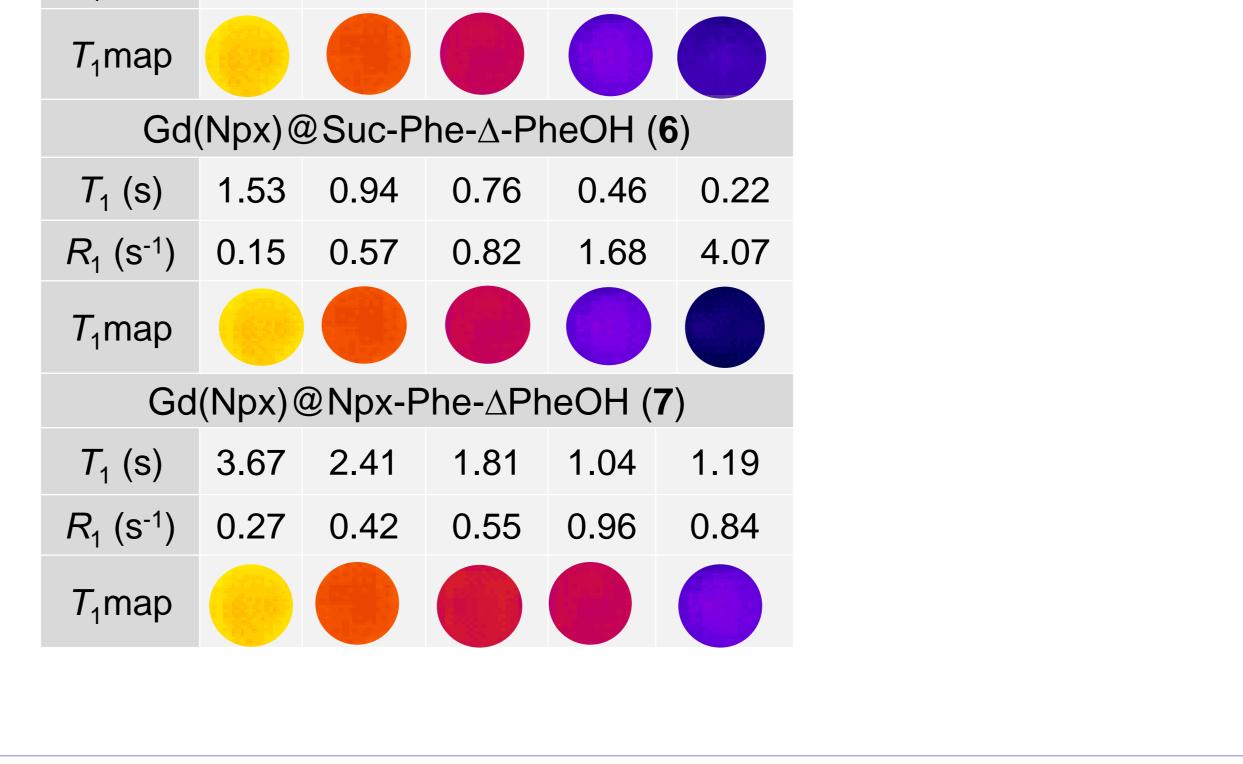
	G' (kPa)	G"(kPa)
Suc-Phe-Δ-PheOMe (5)	15.8	8.57
Suc-Phe-Δ-PheOH*(6)	0.039	0.023
Npx-Phe-Δ-PheOH (7)	39.3	4.07
* Does not gelate		

MRI

Table 2. T_1 and R_1 values for co-assembled hydrogels Gd(Npx)@hydrogel. [Gd] (mM) 0.1 0.2 0.3 0.5 8.0 Gd(Npx) 0.70 0.45 0.27 0.10 $T_{1}(s)$ 0.64 R_{1} (s⁻¹) 0.002 0.13 0.78 2.35 8.89 *T*₁map $Gd(Npx)@Suc-Phe-\Delta-PheOMe$ (5) 0.66 0.29 1.02 0.16 1.56 $I_{1}(S)$ 0.48 1.02 2.94 5.87 R_{1} (s⁻¹) 0.14

Table 3. Relaxivity $(r_1, mM^{-1}s^{-1}; 120)$ MHz; 37 °C) values for co-assembledhydrogelsGd(Npx)@hydrogel.

Gd(Npx)@hydrogel	<i>r</i> 1 -1 -1 (mM s)
Gd(Npx)	8.42
Suc-Phe-∆-PheOMe (5)	7.71
Suc-Phe-∆-PheOH (6)	5.55
Npx-Phe-Δ-PheOH (7)	10.29


- The Gd(NPx) complex displays a relaxivity value (8.42 mM⁻¹s⁻¹) in accordance with its intermediate molecular weight. The complex does not undergo self-association in the concentration range studied.
- The co-assembled Gd(Npx)@dehydrodipeptide hydrogels show concentration-dependent T_{1w} MRI contrast enhancement.
- * The hydrogel Gd(Npx)@Npx-Phe-Δ-Phe-OH is significantly more efficacious as T_1 MRI CA than the Gd(Npx)@Suc-Phe-Δ-PheOMe and the Gd(Npx)@Suc-Phe-Δ-PheOH hydrogels, presumably due to association between the Gd(Npx)-complex and the Npx-Phe-Δ-PheOH hydrogel fibers tuning of the rotation correlation time t_R .
- The efficacy of the co-assembled Gd(Npx)@hydrogel Contrast Agents seem to be determined by the structure of the hydrogelator.
- High relaxivity Gd@hydrogel MRI Contrast Agents can be attained by structural design of hydrogelators and Gd-complexes.

Injectable Gd@hydrogel Contrast Agents loaded with drugs are potential cancer theragnostic.

References:

[1] M. F. Ferreira *et al.*, *Dalton Trans.*, **2014**, 43, 3162.
[2] H. Vilaça *et al.*, *Biomacromolecules*, **2015**, 16, 3562.
[3] Carvalho *et al.*, *Nanomaterials*, **2019**, 9, 541.

Acknowledgments: The authors acknowledge the FCT under the Project PTDC/QUI-QOR/29015/2017 and CQ/UM UID/QUI/00686/2013 and UID/QUI/0686/2016 projects..

