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Abstract: Amongst emerging Transition Metal Dichalcogenides (TMDCs), molybdenum disulfide 12 
(MoS2) has attracted a remarkable interest thanks to many possible applications. In particular, 13 
MoS2 has potentialities not yet fully realized in solution-based applications. The morphological and 14 
the structural properties of MoS2 films deposited by spin-coating onto Si/SiO2 substrates were 15 
investigated by Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM) and 16 
Micro-Raman Spectroscopy. High resolution AFM imaging highlights the presence of a layered 17 
structure. The thickness of each layer is estimated to be around 13 nm. Micro-Raman 18 
measurements reveal that there is the coexistence of both 2H-MoS2 and 1T-MoS2 phases, which 19 
could be useful for electrical applications. Moreover, the band at 290 cm-1 is assigned to the 20 
amorphous phase of MoS2. The detectability of the mode E1g in back scattering geometry is ascribed 21 
to the disorder of the amorphous phase. 22 
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1. Introduction 25 

Among Transition Metal Dichalcogenides (TMDCs), molybdenum disulfide (MoS2) offers 26 
several advantages because of its unique and tunable electronic properties. A simple model to 27 
describe the structure of MoS2 states that one molybdenum (Mo) atom is covalent bonded with three 28 
sulfur (S) atoms on the top and three S atoms on the bottom in a prismatic way. A layer is obtained 29 
when the prismatic structure is repeated infinite times on one plane; in this way one layer is made by 30 
a plane of Mo atoms enclosed in two planes of S atoms [1]. While the bonds among the different 31 
atoms inside a layer are covalent, the addition of others layers occurs by Van der Waals interactions, 32 
weaker than the former, among the different atoms of each layer [1]. MoS2 shows mainly two phases: 33 
one with a trigonal prismatic structure (2H-MoS2) and one with an octahedral structure (1T-MoS2). 34 
The two phases exhibit completely different electronic structures: 2H-MoS2 phase is semiconducting 35 
while 1T-MoS2 is metallic [2]. In Ref. [3], Eda et al. have shown that 2H/1T hybrid structures coexist 36 
in chemically exfoliated MoS2 nanosheets. 37 

Scalable production of 2D materials can be achieved by solution-based exfoliation methods [4]. 38 
In particular, MoS2 has potentialities not yet fully realized in solution-based applications [5] . 39 

Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM) and Micro-Raman 40 
spectroscopy measurements were carried out on MoS2 films spin-coated onto Si/SiO2 substrates. 41 

Micro-Raman spectroscopy measurements reveal the coexistence of 2H-MoS2 and 1T-MoS2 42 
phases, which is useful for electrical applications [6].  43 

2. Materials and Methods  44 
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Silicon (Si) wafers used as substrates were ultrasonically cleaned in acetone, then in 45 
double-distilled water and isopropanol. At the end, they were dried with warm air. 46 

The commercial aqueous solution of MoS2 dispersion 0.1-0.5 mg in H2O, which was obtained by 47 
solution-based exfoliation methods, was bought from Sigma Aldrich. The solution was sonicated for 48 
30 minutes using an ultrasonic bath. 49 

MoS2 films were reproducibly prepared by spin-coating the solution onto Si/SiO2 substrates 50 
(SiO2 thickness of ~2 nm). The results are reported on samples prepared at 6000 rpm spin coating 51 
speed and 60 s as deposition time.  52 

The MoS2 flakes were characterized by scanning transmission electron microscope (STEM). A 53 
drop of the sample solution was placed on a Formvar/carbon on 300 gold mesh type S162A3 (Agar 54 
Scientific) and dried at room temperature. SEM analysis was accomplished with a FEI Quanta FEG 55 
400 F7 eSEM microscope. 56 

Tapping mode AFM images were obtained in ambient conditions with a Multimode 8 equipped 57 
with a Nanoscope V controller (Bruker Instruments). Images were acquired using cantilevers with a 58 
force constant k=5 Nm−1 (model TAP150A, Bruker). The scan line speed was optimized between 1 59 
and 3 Hz over 512×512 pixels. Image processing and analysis were carried out using the free 60 
software WSxM [7]. 61 

Micro-Raman spectra were collected by using a Horiba-Jobin Yvon microprobe apparatus 62 
(spectral resolution ∼2 cm−1), equipped with a CCD (256 x 1024 pixels) detector cooled at - 70°C and 63 
with a 532 nm line of a diode laser, with an emitted power of 50 mW. The laser spot was about 2–3 64 
µm of apparent diameter. Heating filter with different optical density were used to avoid structural 65 
changes due to laser. 66 

3. Results and discussion 67 

3.1.  STEM, SEM and AFM measurements 68 

A STEM image of MoS2 flakes drop-casted onto a gold mesh is reported in Figure 1 (a).  69 
The size distribution of the MoS2 flakes areas is shown in Figure 1 (b), in which it is evident that 70 

most MoS2 aggregates have dimensions less than 30 nm. 71 

 72 

Figure 1. STEM image of drop-casted MoS2 flakes onto a gold mesh (a) and size distribution of MoS2 73 
flakes areas (b). 74 

A SEM image of MoS2 films spin-coated onto Si/SiO2 substrate is reported in Figure 2.  75 
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 76 

Figure 2. SEM image of spin-coated MoS2 films onto Si/SiO2 substrates. 77 

The surface topographies of MoS2 films spin-coated onto Si/SiO2 substrates were characterized 78 
by AFM analysis. The investigated areas show a homogeneous MoS2 deposition on the surface as 79 
reported in Figure 3 in a 2D (a) and a 3D representation (b). Root mean square roughness measured 80 
on 100x100 m2 areas is (7.0±1.5) nm. High resolution AFM imaging highlights the presence of a 81 
layered structure, visible in small areas in Figure 3 (c). The thickness of each layer is estimated to be 82 
(13±2) nm, as it is reported in the line profile shown in Figure 3 (d).  83 

 84 

Figure 3. AFM surface images of MoS2 films spin-coated onto Si/SiO2 substrates acquired on a 85 
100x100 m2 area in a 2D (a) and 3D (b) representation. Image acquired on an 8x8 m2 area (c) and 86 
profile along the cyan line (d). 87 

3.2.  Micro-Raman spectroscopy measurements 88 

The main Raman modes of MoS2 are E1g (286 cm-1),  (383 cm-1), A1g (408 cm-1) and  (32 89 

cm-1) [8]. 90 
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The E1g, , and  are in-plane Raman active modes while the A1g is out of plane. The  91 

 are vibrations of Mo and S planes in opposite direction in the MoS2 structure, while the   92 

are assigned to the vibrations of Mo and S planes in the same direction. The A1g mode is due to the 93 

vibrations of only S atoms along the c axis while the E1g mode is ascribed to the in-plane vibrations 94 
of S atoms [9]. 95 

In figure 4 the representative Raman spectra collected on MoS2 films spin-coated onto Si/SiO2 96 
substrates are reported. 97 

 98 

Figure 4. Representative Micro-Raman spectra collected on MoS2 films spin-coated onto Si/SiO2 99 
substrates; 2H-MoS2 phase (a) and 1T-MoS2 phase (b). 100 

As it can be seen in Figure 4 (a), the only present modes are  and A1g, which fall at about 101 

380 cm-1 and 405 cm-1, respectively. The position of the high frequency mode indicates that the MoS2 102 
sample is monolayer, while the other mode seems to indicate a multilayer structure [1]. Such 103 
findings indicate that Figure 4 (a) has been collected on 2H-MoS2.  104 

In Figure 4 (b), in addition to the bands seen in Figure 4 (a), the bands at about 290 cm-1 and 299 105 

cm-1 are clearly detectable. Even though the E1g mode is Raman forbidden in back scattering 106 

geometry [10], these two modes are assigned to E1g. In particular, the mode at 299 cm-1 is associated 107 
to 1T-MoS2 [2], while the band at 290 cm-1 is assigned to the amorphous phase of MoS2 [11]. The 108 

detectability of the E1g mode, even in back scattering geometry, is ascribed to the disorder of the 109 
amorphous phase. 110 
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