

The 5th International Electronic Conference on Water Sciences (ECWS-5) Session E. Integrated Modelling of the Interactions between Water and the Ecosphere

Landscape pattern effects on surface runoff: Assessment using a hydrologic model in the Fuhe River Basin of Poyang Lake Watershed

Jianzhong Lu^{1, *}, Qingqing Yan², Hongzhi Wang², and Xiaoling Chen¹

1. State Key Laboratory of Information of Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China.

2. School of Urban and Environment Sciences, Central China Normal University, Wuhan 430079, China * Tel.: (+86)27-68778755, Email: lujzhong@whu.edu.cn

Nov. 16-30, 2020

Outline

Introduction

- With the development of social economics recently, human activities intensively change the landscape, which significantly impacts the water cycle in the watershed.
- It will lead to water problems such as water pollution, water redundancy and shortage.

Introduction

* Impact assessment of landscape change on surface runoff in watershed will provide

Knowledge for water resources management

Information of Best Management Practices for land development

Regulation of water cycle under regional landscape changes

River discharge for drought and flood prediction

Study area and data

* Fuhe River basin (FRB) in Poyang Lake watershed

- Poyang Lake is the large freshwater lake in China.
- Fuhe River is one of the five major tributaries of Poyang Lake, and its drainage area is the second largest basin in Poyang lake watershed with area 16493 km²
- There are four ground-based meteorological stations named Guangchang, Nancheng, Zhangshu, and Guixi within and around the basin.
- The Lijiadu hydrological station measures discharge of the basin.

Study area and data

* Data processing

- Land use and cover change
 - Supervised classification method is applied to the satellite images, including Landsat TM images in 1990, Landsat ETM+ images in 2000, and HJ-1A/B CCD images in 2008.
 - Land use cover was divided into 8 classes, including Rice paddies, Agricultural land, Forest, Grassland, Urban, Water, Wetland and Bare land.

Study area and data

***** Data preparation

- DEM
 - ASTER GDEM
 - 30m ground resolution

Soil map

• Soil type map and soil physical property database. The soil type map was from the 1:1 000 000 Harmonized World Soil Database (HWSD)

Method

Method

*** SWAT model setup in FRB**

1400

1200

1000

800

600

400

200

0

2

m3/s

Discharge /

***** Runoff variations in FRB

- Increasing during 1990–1999
- Decreasing during 2000–2008
- Fluctuation during 2009–2013

5

6

Month

1990-1999

-2000-2008

← 2009-2013

10

q

- The moving average of rainfall and runoff fluctuates in the same trend and in the same direction, and R² of both reaches 0.798, indicating that precipitation can significantly affect runoff.
- The change rate curve shows that the variation range of runoff is much stronger than that of rainfall. Precipitation is one of the influential factors of runoff, and other factors such as human activities also have great influence.

***** Runoff variations in FRB

Runoff is mainly affected by climate change and human activities. By using the mathematical relationship of three periods derived from Double Cumulative Curve Method, the contributions of climate and human activities to surface runoff was calculated in FRB from 1990 to 2013.

	Annual	Rur	noff (m ³ /s)		Climate	Change	Human a	activities
Period	rainfall (mm)	Observed annual mean runoff	Calculated annual mean runoff	Total changes	Impacted amount (m ³ /s)	Contribution rate(%)	Impacted amount (m ³ /s)	Contribution rate (%)
1990-1999	1814.90	15.57	-	_	-	-		-
2000-2008	1667.75	12.11	14.36	-2.24	-1.16	33.39%	-2.30	66.61%
2009-2013	1741.33	13.27	16.21	-2.94	0.63	-21.54%	-2.94	127.46%

***** Runoff results simulated by SWAT model

- The simulated and observed runoff fitted well, and the R² and E_{ns} of the three periods were 0.91, 0.86, 0.92 and 0.89, 0.80 and 0.90, respectively.
- The built SWAT Model is able to generate accurate result of hydrology prediction in FRB.

* Landscape pattern changes in FRB

Year	Area and rate	Rice paddy	Agricultural land	Forest	Grassland	Water	Wetland	Urban	Bare land
1990	Area/km ²	2877.68	1685.42	8206.12	1360.37	202.75	20.68	211.20	172.97
1770	Percentage/%	19.53	11.44	55.68	9.23	1.38	0.14	1.43	1.17
2000	Area/km ²	2166.51	1607.66	8467.46	1574.34	295.24	33.64	362.29	353.36
2000	Percentage/%	14.58	10.82	56.98	10.59	1.99	0.23	2.44	2.38
2000	Area/km ²	2249.28	1251.28	8907.58	1341.20	172.16	37.04	518.09	272.27
2009	Percentage/%	15.25	8.48	60.39	9.09	1.17	0.25	3.51	1.85
1990–2000	Change rate %	-24.71	-4.61	3.18	15.73	45.62	62.67	71.54	104.29
2000–2008	Change rate /%	3.82	-22.17	5.20	-14.81	-41.69	10.11	43.00	-22.95

From 1990 to 2008, the area of rice paddy and bare land decreased significantly, while the area of forest, wetland and urban area increased.

* Landscape pattern changes in FRB

			200	8				
	Rice paddy	Agricultural land	Forest	Grassland	Water	Wetland	Urban	Bare land
Rice paddy	1023.02	406.87	944.95	232.79	17.65	4.85	172.42	74.84
	35.55%	14.14%	32.84%	8.09%	0.61%	0.17%	5.99%	2.60%
Agricultur al land	551.33	245.12	531.67	167.32	13.36	7.13	101.39	67.93
	32.72%	14.55%	31.55%	9.93%	0.79%	0.42%	6.02%	4.03%
Forest	237.82	382.42	6620.51	756.94	16.31	12.21	118.10	59.43
	2.90%	4.66%	80.68%	9.22%	0.20%	0.15%	1.44%	0.72%
Grassland	237.18	171.78	677.17	167.07	6.89	3.49	61.86	34.76
	17.44%	12.63%	49.78%	12.28%	0.51%	0.26%	4.55%	2.56%
Water	31.57	7.19	32.60	2.77	96.05	5.01	16.96	10.59
	15.57%	3.55%	16.08%	1.37%	47.37%	2.47%	8.36%	5.22%
Wetland	10.13	2.25	1.57	0.21	2.41	0.20	3.28	0.63
	48.99%	10.86%	7.60%	1.03%	11.64%	0.98%	15.85%	3.05%
Urban	83.18	15.85	54.01	5.22	13.58	2.28	28.53	8.54
	39.39%	7.50%	25.57%	2.47%	6.43%	1.08%	13.51%	4.05%
Bare land	73.15	18.79	35.14	7.62	5.76	1.83	15.28	15.32
	42.31%	10.87%	20.32%	4.41%	3.33%	1.06%	8.84%	8.86%

From 1990 to 2008, a large number of rice paddy, bare land, grassland and water area were transferred to forest and urban area, and some bare land and wetland were transferred to rice paddy.

Landscape types transfer matrix in 1990-2009

***** Landscape pattern changes in FRB

Landscape indices change of FRB from 1990 to 2008

Year	NP PD (n/100h	a) MPS (ha)	FRAC_AM	CONTAG(%)	SHDI	SHEI
1990	1047249 71.0612	1.4072	1.3591	51.5206	1.2942	0.589
2000	1499697 100.9184	0.9909	1.335	45.4509	1.3507	0.6496
2008	729528 49.4632	2.0217	1.3652	51.7707	1.277	0.6141
	Landscape fragmentat reduced greatly	ion	Patch shapes became complex	Patch connectivity was weak first and then strong	Patch he and e were	eterogeneity quilibrium enhanced

NP (Number of Patches), PD (Patch Density), MPS (Mean Patch Size), FRAC_AM (Fractal dimension of Area Weighted), CONTAG (contagion index), SHDI (Shannon's Diversity Index), SHEI (Shannon's Equilibrium Index)

Landscape pattern changes in FRB

Landscape fragmentation

• Rice paddy and grassland were the most fragmented landscapes, of which NP and PD values first increased then decreased, and fragmentation degree first increased then decreased, showing an overall weakening trend.

Landscape dominance

• Forest was the dominant landscape in this area, and the degree of dominance increased year by year (PLAND: Percentage of Landscape)

Landscape shape

• The Patch Complexity of urban area increased year by year

Landscape IJI

• The IJI (Interspersion Juxtaposition Index) of urban area is higher than that of other landscape types, indicating that these two types are adjacent to other types, which denotes that human activities have an important impact on the distribution of landscape types.

Lan	dscape indice	s change		1990 10 2008	on landscape	etype
Year	Landscape	NP	PD (n/100ha)	PLAND (%)	FRAC_AM	IJI (%)
	Rice paddy	300905	20.4179	19.5265	1.3079	58.4875
	Bare land	192943	13.0922	11.4364	1.2564	65.8581
	Forest	116245	7.8878	55.6827	1.4477	53.6905
1990	Grassland	327128	22.1973	9.2308	1.1434	60.7551
	Water	10330	0.7009	1.3758	1.2635	76.2894
	Wetland	1497	0.1016	0.1403	1.1421	71.3018
	Urban	51998	3.5283	1.4331	1.1332	84.5781
	Unused land	46146	3.1312	1.1737	1.119	61.3609
	Rice paddy	308133	20.735	10.8183	1.1716	72.8939
	Bare land	175026	11.7779	2.4379	1.0784	90.5337
	Forest	88211	5.9359	56.9796	1.4356	74.4457
2000	Grassland	451998	30.4161	10.5941	1.1309	75.2194
	Water	3521	0.2369	0.2264	1.1286	65.5796
	Wetland	236553	15.9182	14.579	1.318	67.1805
	Urban	51326	3.4539	1.9867	1.2084	79.3588
	Unused land	184929	12.4443	2.3779	1.0714	79.4109
	Rice paddy	137983	9.3555	3.5127	1.1106	77.7012
	Bare land	79153	5.3667	15.2505	1.3781	78.2479
	Forest	62172	4.2154	60.3949	1.4447	66.2811
2008	Grassland	189876	12.8739	8.4839	1.1667	70.8871
	Water	7448	0.505	0.2512	1.1123	58.5912
	Wetland	204014	13.8325	9.0935	1.1646	53.7039
	Urban	6014	0.4078	1.1673	1.2598	67.5951
	Unused land	42868	2.9065	1.8461	1.1432	78,1797

***** Impacts of landscape change on surface runoff

• The SWAT model was used to simulate the surface runoff of 31 sub-basins, and Spearman Correlation Analysis was used to calculate the correlation between the average annual runoff and landscape indices of 31 sub-basins.

Landscape Indices	1990-2000	2000–2008	2008–2013
NP	-0.006	0.068	-0.132
PD	0.323	0.467**	0.225
MPS	-0.323	-0.467**	-0.225
FRAC_AM	-0.448*	-0.448*	-0.507**
CONTAG	-0.328	-0.434*	-0.331
SHDI	0.398*	0.428*	0.335
SHEI	0.366*	0.428*	0.348

Correlation between landscape indices and annual average runoff in sub-basins

**The correlation is significant when the confidence(two-sided) is 0.01.

*The correlation is significant when the confidence(two-sided) is 0.05.

***** Impacts of landscape change on surface runoff

Correlation between landscape indices and annual average runoff in different landscape types

Landscape	Landscape	1990-2000	2000-2008	2008-2013		PLAND	0.62**	0.497**	0.417^{*}
types	indices	1000				NP	0.308	-0.174	-0.001
	PLAND	0.42*	0.527**	0.287	Water	PD	0.545**	0.091	0.295
Agricultural	NP	0.028	0.137	-0.142		FRAC_AM	0.518**	0.598**	0.394*
land	PD	0.442*	0.517**	0.238		IJI	0.397*	0.368*	0.5**
	FRAC_AM	0.286	0.145	0.213	2	PLAND	-0.4	0.632**	0.285
	IJI	0.465**	-0.134	-0.231		NP	-0.3	0.243	0.181
	PLAND	0.553**	0.522**	0.438*	Wetland	PD	-0.1	0.379*	0.253
	NP	-0.257	-0.191	-0.055	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	EDAC AM	-0.1	0.407**	0.233
Rice paddy	PD	-0.066	-0.01	0.255			-0.7	0.497	0.442
	FRAC_AM	0.263	0.368*	0.277		131	-0.0	-0.20	0.439
	IJI	0.527**	-0.16	0.042		PLAND	0.469**	0.508**	0.594**
	PLAND	-0.535**	-0.516**	-0.516**		NP	0.245	0.158	0.014
	NP	0.086	0.152	0.019	Urban	PD	0.538**	0.597**	0.543**
Forest	PD	0.246	0.437*	0.296		FRAC_AM	0.215	0.447*	0.586**
	FRAC_AM	-0.438*	-0.435*	-0.485**		IJI	0.096	0.437*	-0.173
	IJI	0.41	0.205	0.118		PLAND	0.535**	0.252	0.179
	PLAND	0.034	0.154	-0.292		NP	0.308	-0.004	-0.036
	NP	-0.102	-0.029	-0.304	Bare land	PD	0.478^{**}	0.279	0.187
Grassland	PD	0.275	0.379*	-0.311		FRAC_AM	0.554**	0.137	0.079
	FRAC_AM	-0.222	-0.254	-0.04		IJI	0.305	0.229	-0.031
	IJI	0.418*	0.458**	-0.424*	**The corre *The correl	lation is significan	t when the confide when the confiden	nce(two-sided) is 0.0 ce(two-sided) is 0.05	1.

Conclusion

- ***** The runoff of FRB showed a downward trend from 1990 to 2013.
- On landscape level from 1990 to 2013, NP and PD decreased while MPS and FRAC_AM increased, as well as SHDI and SHEI increased slightly. The PD, SHDI and SHEI showed a significant positive correlation with surface runoff, while MPS and FRAC_AM showed a remarkable negative correlation with surface runoff. The degree of landscape fragmentation decreased, while the shape of patches in the basin became more and more complex, with the uneven distribution of patches was enhanced, which increased the land surface interception and reduces the runoff yield.
- On landscape types level, NP and PD of rice paddy and grassland decreased, while the PLAND of forest increased continuously, and the FRAC_AM and IJI of urban area increased. The PLAND of bare land, rice paddy, water and urban area is significantly positively correlated with runoff, while the PLAND and FRAC_AM of forest shows a remarkable negative correlation with runoff. The complexity of patch shape in forest enhances the interception of rainfall and transpiration of plants, which reducing the runoff.

Thank you for your attention!

