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Abstract: Erhai Lake, the second-largest freshwater lake in the Yunnan Province of China, has a 12 

flourishing tourist industry. Unfortunately, many problems such as deterioration of water quality 13 
and eutrophication were occurred in Erhai Lake, leading to numerous environmental problems. 14 
Chlorophyll-a (chl-a) is a critical ecological and environmental parameter for water quality, which 15 
plays an important role in the wetland environment and eutrophication of water. Human-induced 16 
land-use change can indicate the degree of the interference of anthropogenic activities on the 17 
regional ecological environment. Therefore, understanding the relationships between changes in 18 
land use and water quality is of great importance to improve water pollution control and for 19 
providing guidelines for land use planning. However, the effects of ongoing anthropogenic 20 
activities on water quality in Erhai Lake Basin are not well understood. Closing this knowledge gap 21 
first requires obtaining accurate chl-a concentration information. The Landsat TM/ETM+/OLI 22 
imagery were used to estimate the chl-a concentration in Erhai Lake from 1988 to 2020. Long-term 23 
chl-a distributions of Erhai Lake revealed the changing trend of water quality. Besides, a Random 24 
Forest classifier could be applied to spectral features extracted from time-series of Landsat 25 
TM/ETM+/OLI imagery, ranging from 1988 to 2020, to increase the accuracy of land cover 26 
classification. The classification results show the spatiotemporal patterns and characteristics of land-27 
use change in Erhai Lake Basin. The land use change has a direct impact on water quality varied 28 
over nearly five decades; both positive and negative effects for certain land-use types were found 29 
in Erhai Lake Basin. These findings shed new light on the impact changes of land use on water 30 
quality and provide a scientific foundation for land use management and remediation plans. 31 
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 34 

1. Introduction 35 

As valuable ecosystem and natural resources, inland lakes not only provide crucial habitats for 36 

wildlife including aquatic species and a multitude of mammals[1,2], but also act as hot spots of global 37 

carbon cycling and major players of climate change[3], providing critical ecosystem services and 38 

mitigating the impact of floods and droughts by their own storage functions[4]. However, a large 39 

number of inland lakes have been confronted with severe water quality deterioration[5], such as 40 

eutrophication[6]. Erhai Lake, located in the northwestern of Yunnnan Province, China (Figure 1), is 41 

also facing the problem of cyanobacteria bloom[7]. Therefore, it is vital to monitor the long-term 42 

water quality of Erhai Lake. 43 
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The Chlorophyll-a (chl-a) concentration is one of the key water quality parameters that play a 44 

critical role in affecting ocean biology and ecology[8]. The use of the traditional field sampling 45 

methods could only reveal the accurate information for specific sites, which is insufficient in spatial 46 

and temporal coverage to derive statistically meaningful results[9]. With better spatial distribution 47 

and temporal resolution than the traditional techniques, remote sensing technology can acquire the 48 

distribution of chl-a at large spatial scales[10]. Many methods have been proposed to retrieval the 49 

chl-a concentration based on remote sensing images in previous studies. The empirical algorithms 50 

have been widely used in ocean color remote sensing monitoring as the potential advantage of simple 51 

and convenient in application[11,12]. Based on the empirical equations, bio-optical models, and 52 

radiation transfer models, the semi-analytical algorithms have been proposed for retrieving optically 53 

significant constituents (OSCs), such as the chl-a concentration[13,14]. Machine-learning approaches 54 

like random forest (RF) approach performed reasonably well to capture the nonlinear relationship 55 

instead of the commonly used methods in previous studies[15]. 56 

Many other ocean colour satellites have been launched to monitoring biological parameters of 57 

the water environment, such as Sea-Viewing Wide Field-of-View Sensor (SeaWiFS), Moderate 58 

Resolution Imaging Spectroradiometer (MODIS), and the Visible Infrared Imaging Radiometer Suite 59 

(VIIRS)[16]. However, the spatial and spectral resolutions of current remote sensors can hardly meet 60 

the requirements of inland water color parameters’ inversion due to the relatively small size of inland 61 

waters and their complex optical properties. Considering the limited time span of Medium 62 

Resolution Imaging Spectrometer (MERIS), it is difficult to reveal the long-term variation of chl-a 63 

concentration. Fortunately, the Landsat TM/ETM+/OLI sensors provided a significant advantage over 64 

the ocean colour sensors with long term observations and a higher spatial resolution (30 m full 65 

resolution), which has been widely used in inland water monitoring. For example, the 2013–2018 time 66 

series of 296 Landsat imageries were used by Markogianni et al. (2020) to quantify the chl-a 67 

concentration[17]. 68 

To bridge the abovementioned gaps, this study aims to monitor the chl-a concentration from 69 

1988-2020 in Erhai Lake based on the Landsat TM/ETM+/OLI data. We had the following specific 70 

objectives: 71 

(1) To obtain accurate results of chl-a concentration between 1988 and 2020. 72 

(2) To explore the driving forces behind the long-term variation of chl-a concentration according 73 

to quantitative results of related land-use and land-cover data analyses. 74 

 75 

Figure 1. The location of Erhai Lake, match-up samples, and the meterologic stations in Erhai Lake 76 
Basin 77 
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2. Results 78 

2.1. Chl-a Distributions in Erhai Lake from 1988 to 2020 79 

Derived from Landsat TM/ETM+/OLI images between 1988 and 2020, Figure 2 demonstrated the spatio-80 
temporal variations of chl-a in Erhai Lake. The mean chl-a concentration of Erhai Lake ranges from 11.12 to 81 
13.0 mg/m3. It went through ups and downs between 1988 and 2020 and reached the highest annual average 82 
chl-a (13.0 mg/m3) in 2000. In the following two decades, the annual average chl-a decreased gradually. From 83 
space, the chl-a in the south part of Erhai Lake was higher than that in the northern. The chl-a concentration 84 
decreased gradually from nearshore to the center of the lake. 85 

 86 

Figure 2. Landsat-derived chl-a distributions in Erhai Lake between 1988 and 2020. 87 

2.2. Land Cover Types changes in Erhai Lake Basin between 1988 and 2020  88 

Figure 3 shows the classification maps for each of the Landsat images between 1988 and 2020s. 89 
The spatial distributions of eight land cover types were clearly demonstrated within each panel, and 90 
the long-term land cover changes were also revealed. In general, Erhai Lake Basin witnessed the large 91 
degradation of grassland, cropland, and mining land, accounting for 15.9%, 4.1%, and 3.8% of the 92 
total area in its region. Forest, garden, and building areas were increased in the past 32 years, 93 
accounting for 17.4%, 0.9%, and 2.0% of the total area. The Erhai Lake area remained almost 94 
unchanged. 95 
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Figure 3. Eight land cover types (including grassland, cropland, forest, garden, building, mining land, 96 
snow, and water) changes in Erhai Lake Basin between 1988 and 2020.  97 

3. Discussion 98 

The percentages of eight land cover types in Erhai Lake Basin from 1988 to 2020 are plotted in 99 
Figure 4 to facilitate visualization. With the increase of cropland, building area, and mining land, the 100 
mean chl-a concentration of Erhai Lake was also increasing gradually. The sum of cropland, building, 101 
and mining land reached the highest percentage in 2000, which led to the mean chl-a concentration 102 
in 2000 was significantly higher than that in other years. After that, with the increase of forest area, 103 
the mean chl-a concentration of Erhai Lake gradually decreased. The water quality of Erhai Lake was 104 
improved. 105 

 106 

Figure 4. Percentages of eight land cover types in Erhai Lake Basin between 1988 and 2020. 107 

4. Materials and Methods 108 

Landsat TM/ETM+/OLI imagery were downloaded from the United States Geological Survey 109 
(http://www.usgs.gov/) with no cloud in Erhai Lake Basin that spanned from 1988 to 2020 (Table 1). 110 
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Regarding Landsat TM/ETM+/OLI imagery, data preprocessing include the radiometric calibration 111 
and atmospheric correction, which can be completed in ENVI software. 112 

The MERIS satellite is suitable for retrieving chl-a in Erhai Lake. Due to the limited data points, 113 
we referred to the chlorophyll retrieval results based on MERIS satellite of Han et al. (2014). To 114 
consistent with the MERIS data format, the Landsat data were resampled to 300m by using the 115 
bilinear method. Then, 112 match-up points (Figure 1) were randomly selected to conduct point-to-116 
point modeling by using the random forest regression model obtaining the relative true with high 117 
spatial resolution[18]. Finally, the median filtering algorithm was applied to remove the noise in 118 
chlorophyll retrieval maps. The second task of this study is to discriminate the different land cover 119 
types based on Landsat images. High-resolution images are accessible freely from Google Earth™ 120 
(http://earth.google.com) and could be used as ground-truth for selecting the different land cover 121 
samples. Furthermore, the random forest classification model was employed to build the nonlinear 122 
relationship between ground-truth samples with remote sensing images for quantitatively identify 123 
the land-use transitions[18]. Then, the land cover of the Erhai Lake Basin was classified into eight 124 
major types, including grassland, cropland, forest, garden, building, mining land, snow, and water. 125 

Table 1. Information of Landsat TM/ETM+/OLI images used in this studys. 126 

Sensor Path/row Acquisition Date Resolution 

TM 131/42 1988-02-09 30 

TM 131/42 1990-12-31 30 

TM 131/42 1995-12-13 30 

ETM+ 131/42 2000-12-02 30 

TM 131/42 2005-01-06 30 

TM 131/42 2010-12-22 30 

OLI 131/42 2015-03-07 30 

OLI 131/42 2020-01-16 30 
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