

Accelerating structure-based design of rapid uncharged reactivators of organophosphateinhibited human acetylcholinesterase by joint x ray/neutron mechanistic studies

Andrey Kovalevsky

Neutron Scattering Division Oak Ridge National Laboratory Oak Ridge, TN

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Talk outline

- New crystal form of hAChE amenable for growing neutrondiffraction quality crystals
- Low- and room-temperature X-ray crystallography of RS-170B complexes
- Low-temperature structures of RS194B complexes
- Neutron vibrational spectroscopy of ligand-free and paraoxonconjugated hAChE
- Design of uncharged bis-oximes

Limitations of oxime therapy

Many oximes have low penetration levels across the blood-brain barrier reactivators

Aged conjugates are resistant to current oxime

Half-lives of aging for different conjugates: For soman-hAChE ~ 2 min For sarin-hAChE several hours For VX-hAChE over 30 hours

Slow reactivation rates (a few reactions per minute)

Reactivation efficiency depends on structures of OPs and reactivators HI-6 is an efficient reactivator of AChE conjugated to sarin but not to tabun RS2-170B is more effective than HI-6 for soman conjugate

Kovalevsky et al. 2016 Ann. N.Y. Acad. Sci. 1378, 41-49

CAK RIDGE

The new crystal form of hAChE lack of glycosylation on Asn350 allows a different type of crystal packing

The new crystal form of hAChE face-to-face and 4-helix bundle dimers are formed

RS-170B oxime binds in two conformations to nonmodified active site; one conformation extends to Ser203

Room-temperature structures

Room-temperature structures

8

lide master to edit

Low-temperature structures

hAChE:RS194B

9

VX-hAChE:RS194B

POX conjugation alters acyl pocket loop conformation

Protein vibrational dynamics on the picosecond timescale

Protein vibrational dynamics on the picosecond timescale

12

Open slide master to edit

Design of uncharged bis-oximes

CAK RIDGE

Low-temperature structure of hAChE:LG-703 complex

Gorge reshaping due to LG-703 binding

15

naster to edit

Design of uncharged bis-oximes

3 Z 9 Z	Oxime	Paraoxon			Sarin			Cyclosarin			VX		
		k2	Kox	k r	k 2	Kox	k r	k2	Kox	k r	k 2	Kox	k r
	LG-703	0.14	2.0	69	0.80	0.90	890	0.50	2.9	170	1.3	1.2	1100
	LG-804	0.14	1.7	86	0.73	0.45	1700	0.57	4.5	130	1.1	0.63	1800
	LG-700	0.012	0.065	180	0.15	0.16	910	0.046	0.25	190	0.14	0.16	880
	LG-750	0.081	1.1	71	0.91	1.9	480	0.32	1.4	220	0.59	0.43	1400
	LG-747	0.053	0.45	120	0.33	0.25	1300	0.055	0.51	110	0.44	0.11	3900
	LG-823	0.10	1.4	72	0.55	0.35	1600	0.26	0.89	300	0.65	0.45	1500
	LG-829	0.17	1.9	87	0.78	0.37	2100	>0.5	>2.0	100	0.98	0.43	2300
	RS194B	0.080	0.97	83	0.60	1.0	590	0.17	1.3	140	0.6	0.53	1100
	2PAM	0.27	1.8	150	1.1	0.34	3200	0.73	6.6	110	0.65	0.25	2600

CAK RIDGE

16

Gorecki et al. 2020 J. Biol. Chem. 295, 4079-4092

Neutrons reveal atomic details

17

Open slide master to edit

Crystal growth of hAChE for neutron diffraction

In search for better diffracting crystals – towards micro gravity growth

A. Pre-flight

All hardware transferred to a +12°C refrigerator following hardware integration.

PCG-6 SpX-11 mission

The flight hardware turned over to Cold Stowage on May 30, 2017 and loaded into the DCB on the same day.

Acknowledgements

ORNL:

Dr. Oksana Gerlits (U of Tennessee, Knoxville) Dr. Kevin Weiss (CSMB)

IMAGINE: Prof. Flora Meilleur Dr. Dean Myles Malcolm Cochran

MaNDi: **Dr. Leighton Coates**

CNCS: **Dr. Georg Ehlers**

Funding: NIH CounterAct

National Institutes of Health **CAK RIDGE**

20

UCSD:

Prof. Zoran Radic

Biomedical Research Center University Hospital 500 05 Hradec Kralove **Czech Republic**

Dr. Lukáš Górecki

Faculty of Military Health Sciences

University of Defense

Dr. Killian Oukoloff **Professor Carlo Ballatore** SSPPS, UCSD

Stephanie Bianca Yunshen Pomar Luedtke

Celine Bojo

Prof. Donald Blumenthal

Li

Prof. Xiaolin Cheng

Ohio State U:

Open slide master to edit