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Abstract: Terrestrial Laser Scanning (TLS) enables rapid, automatic and detailed 3D representation 23 

of surfaces with an easily handled scanner device. TLS therefore shows great potential for use in 24 
Forest Inventories (FIs). However, the lack of well established algorithms for TLS data processing 25 
hampers operational use of the scanner for FI purposes. Here we present FORTLS, an R package 26 
specifically developed to automate TLS point cloud data processing for forestry purposes. The 27 
FORTLS package enables (i) detection of trees and estimation of their diameter at breast height (dbh), 28 
(ii) estimation of some stand variables (e.g. density, basal area, mean and dominant height), (iii) 29 
computation of metrics related to important tree attributes estimated in FIs at stand level and (iv) 30 
optimization of plot design for combining TLS data and field measured data. FORTLS can be used 31 
with single-scan TLS data, thus improving data acquisition and shortening the processing time, as 32 
well as increasing sample size in a cost-efficient manner. The package also includes several features 33 
for correcting occlusion problems in order to produce improved estimates of stand variables. These 34 
features of the FORTLS package will enable the operational use of TLS in FIs, in combination with 35 
inference techniques derived from model-based and model-assisted approaches.  36 

Keywords: Forest inventory; LiDAR; remote sensing; R-package; software; stand-level; TLS. 37 

1. Introduction 38 

Information about forest resources is essential for sustainable forest management and 39 
development of forest policies. In this regard, forest inventories (FIs) are used as the main approach 40 
to estimating and monitoring the state and evolution of the main variables of interest. FIs have 41 
improved since they were first introduced, as a result of the continuous appearance of new 42 
technologies, such as Terrestrial Laser Scanning (TLS), considered of great potential value for 43 
enhancing FIs [1-2]. However, TLS has not been yet adopted in FIs for several reasons [3], although 44 
many studies agree that affordability is the main key challenge to overcome, emphasizing that 45 
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automation of the point cloud processing with attainable and easy-to-use software able to extract 46 
information related to important forest attributes is essential [1-5]. 47 

As TLS data sets comprise millions of points, sophisticated methods for automatic processing 48 
are necessary. In this respect, many algorithms with a high level of automation and that are able to 49 
extract tree attributes (diameter at breast height, dbh, height, volume, etc.) have been developed in 50 
the last few decades [6]. Some of these algorithms have also been included in software applications, 51 
e.g. SimpleTree [7], 3D Forest [8] and AutoStemTM [9]. However, there are some drawbacks to using 52 
these applications in FIs: (i) single-tree instead of stand-level approaches (SimpleTree); (ii) 53 
semiautomatic processing (3D Forest); and (iii) commerciality (not suitable for all users) 54 
(AutoStemTM). 55 

Here we present FORTLS, an R package developed with the objective of automating TLS point 56 
cloud data processing and estimating variables for forestry purposes. FORTLS can be used with 57 
single-scan TLS data and enables (i) detection of trees and estimation of dbh, (ii) estimation of some 58 
stand variables, such as density (N, trees ha-1), basal area (G, m2 ha-1) and mean and dominant height, 59 
defined as the mean height of the 100 largest trees ha-1 (hm and H0 respectively), (iii) computation of 60 
metrics related to important tree attributes estimated in FIs at stand level, and (iv) optimization of 61 
plot design for combining TLS data and field measured data. These features of the FORTLS package 62 
will enable the operational use of TLS in FIs, in combination with model-based or model-assisted 63 
inference approaches. 64 

2. Materials and Methods 65 

The steps involved in the TLS data processing algorithms are described in the following sections. 66 

2.1. Detection of trees and estimation of dbh 67 

This first algorithm detects trees and estimates their dbh, which is the basis for further 68 
computations. This is done by the normalize function (Figure 1), which obtains coordinates relative 69 
to the plot centre and the digital terrain model. This function also applies the point cropping process 70 
as a criterion for reducing point density homogeneously in space and proportional to object size [10]. 71 
The output generated is then used as input for the tree.detection function, which detects as 72 
many trees as possible from point clouds in the TLS scans. In addition, for every tree detected, the 73 
function calculates the coordinates of the section centre, estimates dbh, and classifies it as fully visible 74 
or partially occluded. Finally, this function obtains the number of points corresponding to 1.3 m 75 
height sections of trees (i.e. the dbh) for original and reduced point clouds (by applying point cropping 76 
process), as well as their estimations. 77 
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Figure 1. Schematic workflow of FORTLS. The pathway shown in red represents the shortest possible 79 
procedure for estimating variables and metrics. The pathway shown in green includes 80 
choose.plot.design as a previous step for assessing the stability of estimations,  based only on 81 
TLS data. The pathway shown in blue includes plot.design and optimize functions with the 82 
objective of determining the best plot design according to field measured data. distance.sampling 83 
is an optional function which can be used in both approaches. 84 

2.2. Computation of variables and metrics related to attributes estimated in FIs at stand level 85 

Once trees have been detected, the next application of FORTLS is to compute variables and 86 
metrics at plot level. For this purpose, the metrics.variables function produces a set of TLS-87 
based variables and metrics related to forest attributes. These can be obtained for different plot 88 
designs (circular fixed area, k-tree and angle-count) if specified in the arguments. This function also 89 
includes features for correcting occlusion problems generated in TLS point clouds. These features are 90 
based on correcting the shadowing effect [11] and gap probability attenuation with distance to TLS 91 
[12]. Apart from these features, others based on distance sampling methods can be applied with the 92 
distance.sampling function by implementing point transects methods with the trees detected 93 
[13]. This calculates the detection probability for every tree by fitting probability detection functions 94 
to the histogram of trees distribution according to their distance from plot centre. As in previous 95 
studies by the same authors [13], half normal and hazard rate probability functions without and with 96 
dbh as covariate were used.  97 
 Before using the metrics.variables function, previous steps are recommended in order to 98 
select the most appropriate values for the radius, k-tree and BAF (Basal Area Factor) in the function 99 
arguments. This can be done with or without field data.     100 

2.2.1. Field measurements not available 101 

In this case, the choose.plot.design function can be used to plot empirical charts of N and 102 
G estimates as a function of the plot size (estimation-size charts) for different plot designs (circular 103 
fixed area, k-tree and angle-count), through continuous size increments (radius, k and BAF 104 
respectively). These size-estimation charts represent the consistency in predicting the stand variables 105 
across different values of radius, k and BAF. Size-estimation charts can be drawn for individual 106 
sample plots (including all plots together in the same charts) or for mean values (global mean 107 
computed for all the sample plots, or for group means if different strata are considered). Finally, 108 
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different plot designs can be compared if specified in the arguments, producing one size-estimation 109 
chart per variable (N and G). 110 

2.2.2. Field measurements available 111 

When field measurements are available for the same positions of TLS single-scans, the 112 
plot.design and optimize functions can be used to assess the performance of TLS-based metrics 113 
and variables relative to field measurements. The plot.design function examines correlations 114 
(Pearson and Spearman) and the relative deviance between TLS-based estimates and field 115 
measurements, through plots with continuous size increment. This is done for different plot designs 116 
and by default for the most common metrics and variables, although other metrics/variables may be 117 
considered in the arguments. In a second step, those metrics and variables most closely correlated 118 
with the variables of interest are evaluated by the optimize function. This function generates 119 
heatmaps (one per plot design) in which correlations between TLS metrics-variables and estimations 120 
of variables based on field data can be evaluated for all variables and plot sizes.  121 

3. Results 122 

The outputs of the above-mentioned functions are reported below. 123 

3.1. Detection of trees and estimation of their dbh 124 

 The result of these applications is a list of the trees detected with the aforementioned 125 
tree.detection function, which is a data frame object containing attributes for every tree 126 
detected (Table 1). 127 

Table 1. Data frame with detected trees and their estimated attributes. 128 

id file tree x y phi 
phi.lef

t 

phi.rig

ht 
dbh 

horizontal.dista

nce 

numeric 

or 

character 

characte

r (id.txt) 

num

eric 

(n) 

num

eric 

(m) 

numeric (rad) numeric (m) 

 129 

num.points num.points.est num.points.hom num.points.hom.est partial.occlusion 

numeric (n) numeric (0-1) 

id: identification assigned to a sample plot and which coincides with the file name. file: file name, 130 
consisting of the id and the respective extension (.txt, .csv, etc.). tree: number assigned to every 131 
detected tree (1, 2, …, n). x: x coordinate of tree centre relative to plot centre. y: y coordinate of tree 132 
centre relative to plot centre. phi: azimuth of tree centre from plot centre. phi.left: azimuth 133 
corresponding to left border of tree section detected. phi.right: azimuth corresponding to right border 134 
of detected tree section. dbh: estimated diameter at breast height. horizontal.distance: horizontal 135 
distance from sample plot centre to tree centre. num.points: number of points corresponding to 136 
normal tree section (1.3 ± 0.05 m). num.points.est: estimated number of points corresponding to 137 
normal tree section (1.3 ± 0.05 m). num.points.hom: number of points corresponding to normal tree 138 
section (1.3 ± 0.05 m) after point cropping process. num.points.est: estimated number of points 139 
corresponding to normal tree section (1.3 ± 0.05 m) after point cropping process. partial.occlusion: tree 140 
fully visible (0) or partial occluded (1).          . 141 

3.2. Computation of variables and metrics related to attributes estimated in FIs at stand level 142 

The output of the function metrics.variables is a list with three data frames, one per plot 143 
design (circular fixed area, k-tree and angle-count plot), containing the following metrics and 144 
variables computed from TLS data:  145 

Table 2. Structure of list containing metrics and variables. 146 
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 N G V dbhm dbh0 

Number of 

points 

belonging to 

normal sections 

Percentil

es 

fix.plot 

k.tree 

angle.cou

nt 

 

 

N 

N.hn1 

N.hr1 

N.hn.co

v1 

N.hr.co

v1 

N.sh1 

N.corr2 

G 

G.hn 1  

G.hr 1 

G.hn.co

v1 

G.hr.co

v1 G.sh1 

G.corr2 

V 

V.hn1  

V.hr1 

V.hn.co

v1 

V.hr.co

v1 V.sh1 

V.corr2 

dbh.arit 

dbh.sqr

t 

dbh.geo

m 

dbh.har

m 

dbh.dom.ari

t 

dbh.dom.sq

rt 

dbh.dom.ge

om 

dbh.dom.ha

rm 

num.points 

num.points.est   

num.points.ho

m 

num.points.ho

m.est 

P1, P5, P10, 

P20, P25, 

P30, P40, 

P50, P60, 

P70, P75, 

P80, P90, 

P95, P99  

 

N: all N variables are direct estimates of N, estimated using trees detected in TLS data. They are 147 
computed without considering occlusion corrections (N) and by implementing distance sampling 148 
methodologies (N.hn, N.hr, N.hn.cov, N.hr.cov), shadowing effect (N.sh) and gap probability 149 
attenuation with distance from TLS (N.corr). G: all G variables are direct estimates of G, estimated 150 
using detected trees from TLS data. They are computed without considering occlusion corrections (G) 151 
and by implementing distance sampling methodologies (G.hn, G.hr, G.hn.cov, G.hr.cov), shadowing 152 
effect (G.sh) and gap probability attenuation with distance from TLS (G.corr). V: all V variables are 153 
direct estimates of V, estimated using trees detected in TLS data. They are computed without 154 
considering occlusion corrections (V) and by implementing distance sampling methodologies (V.hn, 155 
V.hr, V.hn.cov, V.hr.cov), shadowing effect (V.sh) and gap probability attenuation with distance from 156 
TLS (V.corr). dbhm: estimated dbh mean for detected trees using arithmetic (dbh.arit), square 157 
(dbh.sqrt), geometric (dbh.geom) and harmonic means (dbh.harm). dbh0: estimated dominant dbh 158 
mean (considering the 100 largest trees ha-1) for trees detected using arithmetic (dbh.dom.arit), square 159 
(dbh.dom.sqrt), geometric (dbh.dom.geom) and harmonic means (dbh.dom.harm). Number of points 160 
belonging to normal sections: sum of points belonging to normal sections of all trees detected from 161 
the original point cloud (num.points) and reduced point cloud, reduced using point cropping process 162 
(num.points.hom), and number of points estimated from the original point cloud (num.points.est) 163 
and reduced point cloud, reduced using the point cropping process (num.points.hom.est). Percentiles: 164 
percentile of z coordinate (m) relative to ground level.  . 165 

1 Variables are just computed for fix area and k-tree plots. 166 

2 Variables are just computed for angle count plots. 167 

 168 

3.2.1. Plot design when field measurements are not available 169 

Figure 2 is an example of choose.plot.design output when no arguments are defined. In 170 
these graphical representations, it can be observed that estimations of N and G become approximately 171 
stable from a radius of 8 m (circular fixed area plot) and 10 trees (k-tree plot) and at between 1 and 2 172 
for BAF (angle count plot). 173 
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 174 

Figure 2. Line charts with estimated values of N and G for different plot designs (circular fixed area, 175 
k-tree and angle-count), through continuous size increments (radius, k and BAF respectively). Each 176 
grey line represents a sample plot. 177 

3.2.2.  Plot design when field measurements are available 178 

The outputs of the plot.design function are line charts showing correlation patterns and 179 
relative deviance for TLS derived metrics-variables and estimations of variables based on field data, 180 
for different designs and sizes of plots. One interactive chart (html file) per plot design (circular fixed 181 
area, k-tree and angle-count plot) and variables of interest (N, G, V, hm, H0, dbhm, dbh0) (Figure 3), as 182 
well as their associated database as (csv file), are saved in the work directory.  183 
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 185 

Figure 3. Line chart showing Pearson correlation (continuous line) and relative deviance (dotted line) 186 
for basal area estimation based on field data and the TLS derived metrics and variables: G (direct 187 
estimates of G estimated using trees detected in TLS data), G.hn, G.hr, G.hn.cov, G.hr.cov (considering 188 
occlusion corrections based on distance sampling methodologies) and G_sh (considering occlusion 189 
corrections based on shadowing effect) through continuous size increment (k) for the k-tree plot 190 
design. 191 

Once all TLS metrics and variables have been assessed according to how they are correlated with 192 
the variables of interest, the next step is to evaluate them with the optimize function. This function 193 
generates interactive heatmaps (one per plot design) in which the behaviour of those metrics showing 194 
the best correlations across continuous plot size increment can be observed (Figure 4). The color 195 
palette gives warm and cold colours to highly positive and negative correlations respectively. 196 

 197 

Figure 4. Heatmap showing correlations between variables of interest and TLS variables-metrics. 198 
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4. Discussion 199 

FORTLS enables automated processing of TLS point clouds and production of variables and 200 
metrics related to relevant information about forest attributes. As some of the functions assess the 201 
performance of variable estimations for different plot designs, the application finds the best possible 202 
sampling design for any case. This attribute makes FORTLS a flexible application for FIs purposes 203 
and valid for several types of forests.  204 

 Although FORTLS can be used without including conventional field data, its use is optimal 205 
when TLS data and field measured data are combined and assessed with the plot.design and 206 
optimize functions. This enables optimization of plot design by assessing correlations between 207 
variables of interest (dbh, H, G, etc.) and metrics and variables computed for TLS data, which enables 208 
selection of the most appropriate plot designs for each situation. In the best case, those metrics and 209 
variables for which low deviations from field measurements are obtained can be used to estimate 210 
variables, as in other conventional methods. However, occlusions caused by trees, especially in 211 
single-scan data, represent the main problem in this approach [3]. This drawback may be solved with 212 
some of the occlusion correction features implemented in this package, as assessed in previous 213 
studies [11-13].  214 

The utility of the R package FORTLS for operational use of TLS in FIs has been demonstrated, 215 
confirming previous conclusions considered a guideline for further research on TLS in forestry [5]. 216 
As FORTLS works with single-scan data, co-registration of point clouds in specific software and 217 
placement of targets at field measurements are not required. This improves data acquisition and 218 
shortens the processing time, as well as increasing sample size in a cost-efficient manner, which is 219 
one of the most desirable features of TLS in FIs [3]. Further research with study cases and considering 220 
different metrics that are potentially highly correlated with forest attributes is necessary in order to 221 
consolidate this R package.  222 
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