Testing the Drop-Size Distribution Based Separation of Stratiform and Convective Rain using Radar and Disdrometer data from a Mid-latitude Coastal Region

M. Thurai<sup>1</sup>, V. N. Bringi<sup>1</sup>, D. Wolff<sup>2</sup>, D. Marks<sup>2,3</sup>, and C. Pabla<sup>3</sup>

<sup>1</sup>Colorado State University, Fort Collins, CO 80523, USA <sup>2</sup>NASA GSFC Wallops Flight Facility, Wallops Island, Virginia, USA <sup>3</sup>Science Systems and Applications, Inc., Lanham, MD, USA





# Background

- Stratiform and convective rain are associated with different microphysical processes and generally produce drop size distributions (DSDs) with different characteristics.
- Identification of these two rain types is also important for estimating rainfall rates from ground-based polarimetric radars as well as spaceborne radars.
- > In earlier studies, an empirically-derived DSD-based separation method was tested in:
  - Darwin, AU .... a tropical coastal location using JOSS disdrometer data with dual-freq. profiler and C-band dual-pol. radar
  - Huntsville, Alabama, USA ... a sub-tropical continental location using 2D video disdrometer (2DVD) data and UHF profiler observations
  - Greeley, Colorado, USA ... a mid-latitude continental location with semi-arid climate using 2DVD + MPS data & CSU-CHILL S-band dual-pol radar
- Here we test the separation technique using data+observations from:
  - Delmarva peninsula, USA .... a mid-latitude coastal region
  - using DSD data from 2DVD + MPS and S-band polarimetric radar observations
  - 3 events are considered

## Outline

- Instrumentation and Observations
- Separation technique + Examples
- DSD-based classification versus radar observations ... for the 3 events
- Application of the method for radar data

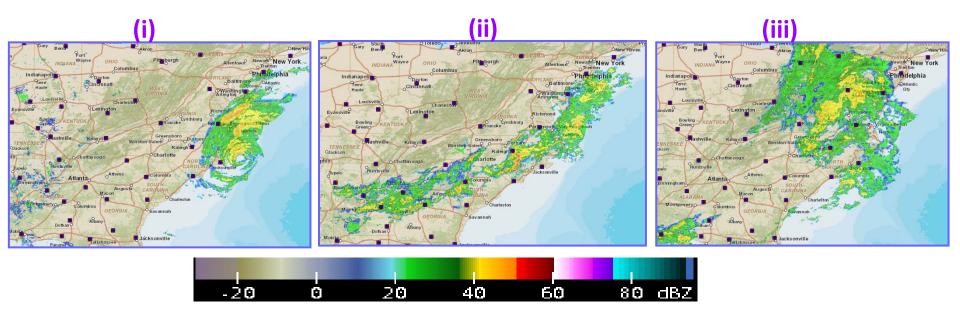
#### Conclusions

### Instrumentations and Observations



#### At WFF:

Network of instruments, including 2DVDs, MPS (Meteorological Particle Spectrometer) inside DFIR double wind-fence, MRR, Pluvio, plus many others


#### 38 km NNE:

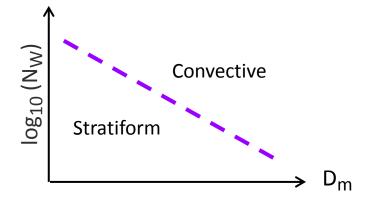
S-band polarimetric radar, NPOL Regular scan sequence includes RHI scans over the disdrometer site

#### Three events considered here:

- i. A category-1 Hurricane event (Dorian) whose rain-bands on 06 September 2019.
- ii. A squall-like event with an 'ill-defined' line convection which occurred on 14 Oct. 2019;
- iii. A more widespread event with small embedded convective cells on 16 October 2019.

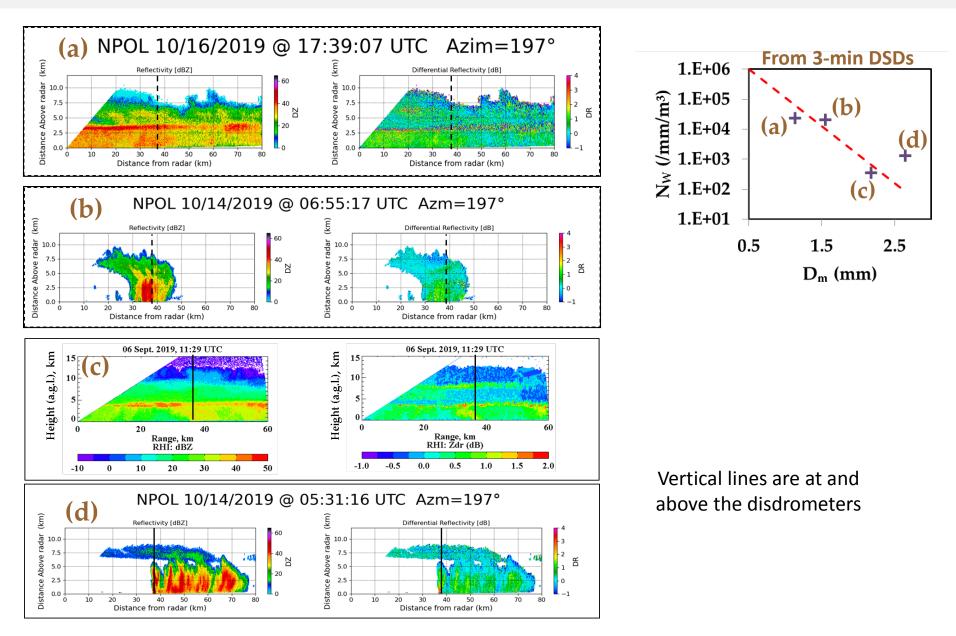
#### Instrumentations and Observations



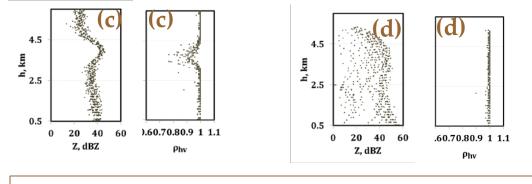

#### **Three events considered here:**

- i. A category-1 Hurricane event (Dorian) whose rain-bands on 06 September 2019.
- ii. A squall-like event with an 'ill-defined' line convection which occurred on 14 Oct. 2019;
- iii. A more widespread event with small embedded convective cells on 16 October 2019.

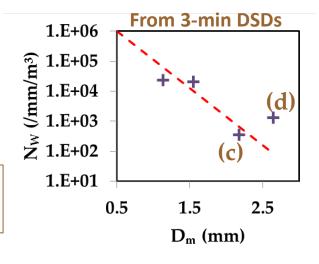
#### Separation Technique + Examples

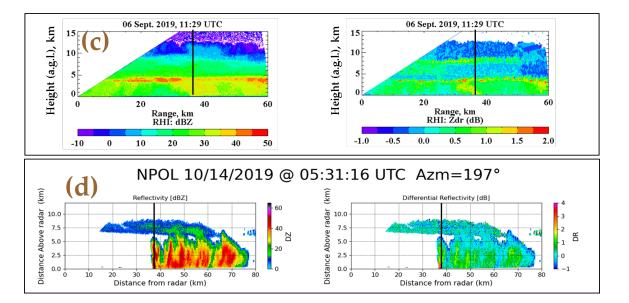

Data and Observations from Darwin, AU, + Huntsville, Alabama, USA showed that

- ⇒ Two main parameters governing the DSDs can be used to separate the two rain types
- Separation in the N<sub>W</sub> − D<sub>m</sub> space ... where D<sub>m</sub> is the mass-weighted mean diameter and N<sub>W</sub> is the normalized intercept parameter
- $\Rightarrow$  Separation line:  $\log_{10} (N_W^{sep}) = c_1 D_m + c_2$

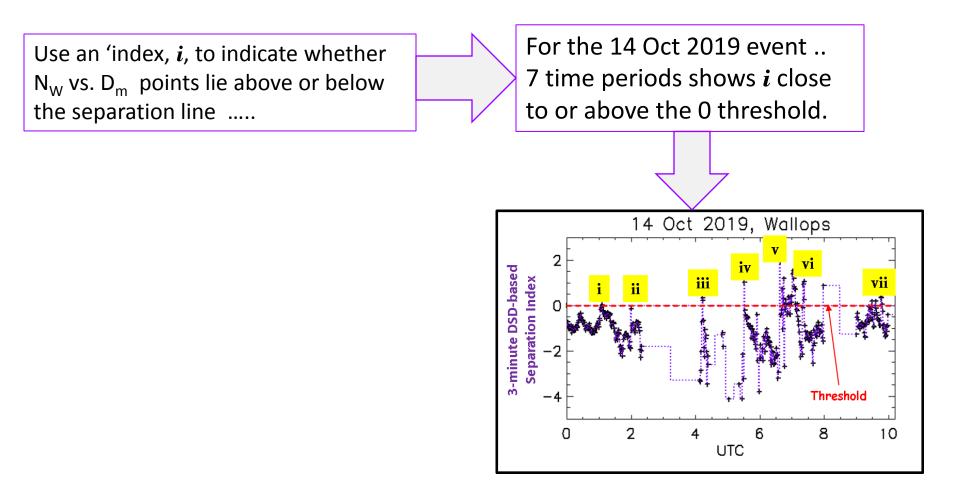


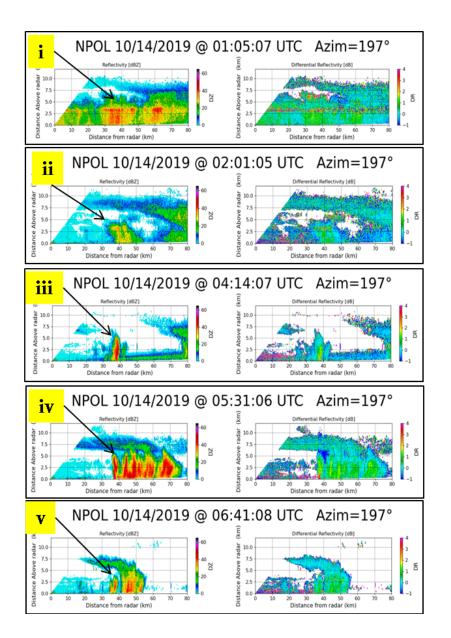

Determine N<sub>w</sub> and D<sub>m</sub> from 1- 3 min DSDs from the ground-based disdrometers
 Compare with NPOL RHI scans over the disdrometer site

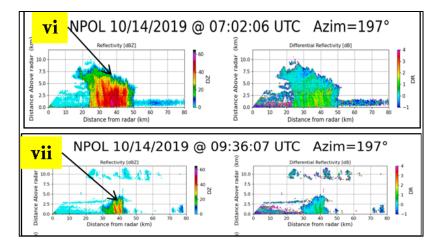

#### Separation Technique + Examples

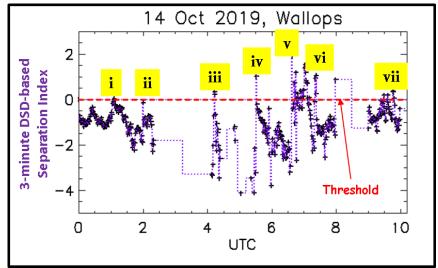



#### Separation Technique + Examples

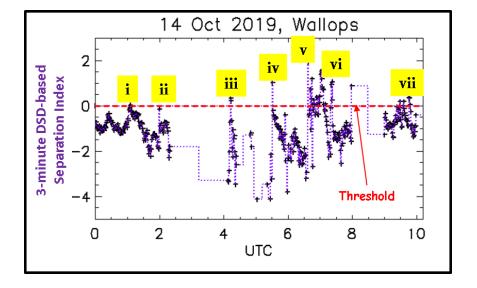




(c) Shows Clear melting layer in height profiles of  $Z_h$  and  $\rho_{hv}$ (d) Shows no melting layer from the height profiles



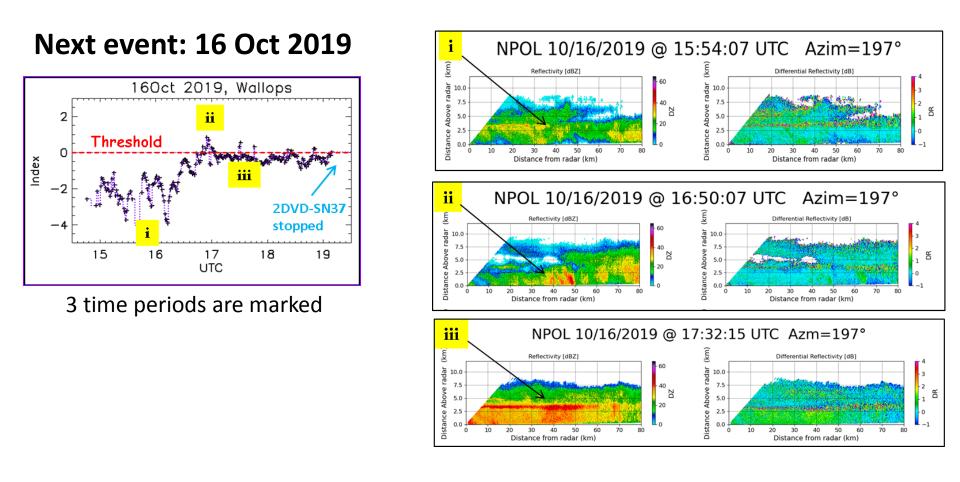

Vertical lines are at and above the disdrometers





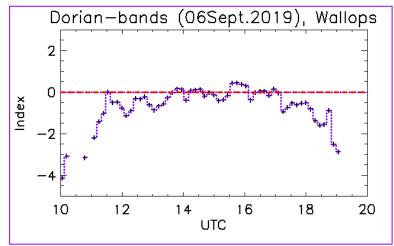




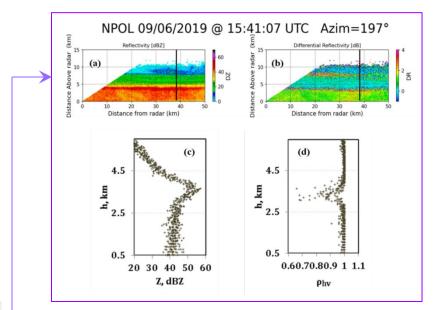


(i) and (ii) are associated with thick bright band
(iii) Modest convection
(iv), (v) and (vi) are Convection
(vii) Shallow (ish) convection

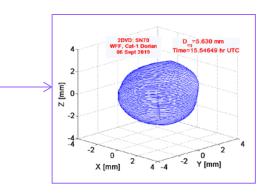


#### So, for the 14<sup>th</sup> Oct. 2019 event:


- $m{i}$  reaches 0 threshold for thick bright-band cases
- $m{i}$  goes positive during convective rain periods
- *i* close to 0 for shallow convection
- i is negative for the remaining time periods, (NPOL scans showed stratiform rain)

(i) and (ii) are associated with thick bright band
(iii) Modest convection
(iv), (v) and (vi) are Convection
(vii) Shallow (ish) convection

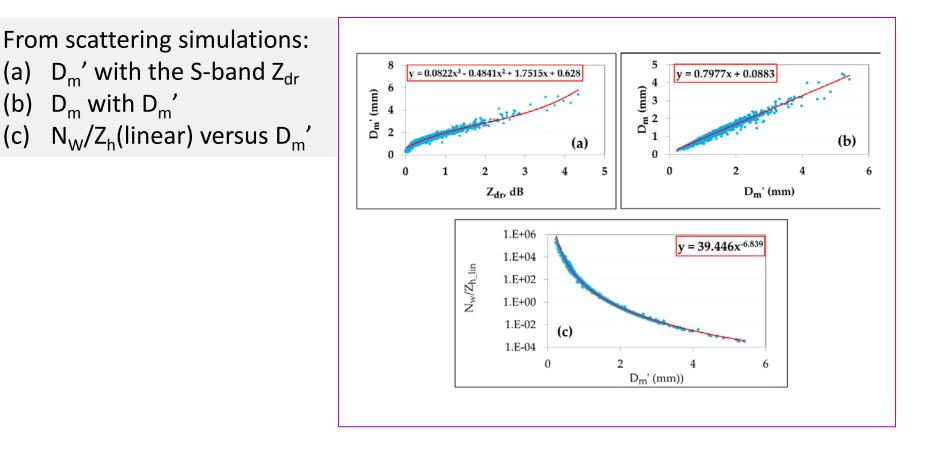




(i) has negative *i* ⇒ RHI shows stratiform rain
(ii) has positive *i* ⇒ RHI shows modest convection
(iii) *i* close to zero ⇒ associated with thick bright band

#### Next event: Dorian rain-bands

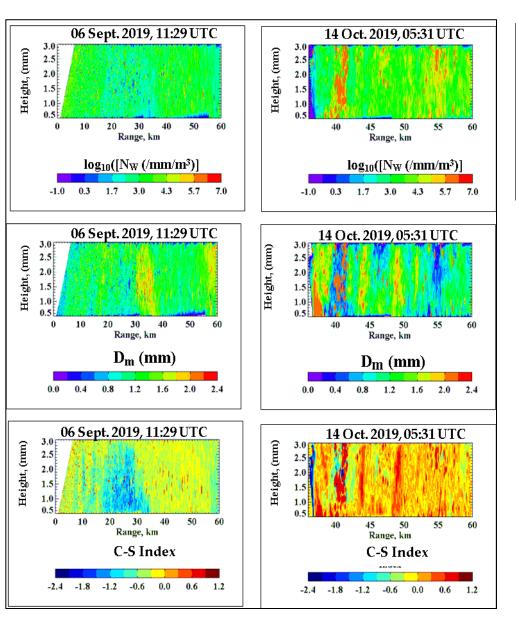


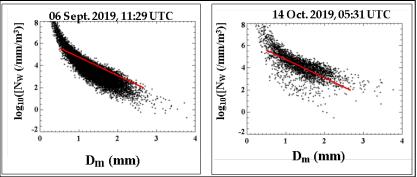
- DSD-based classification indicates mostly stratiform ⇒ Confirmed by NPOL RHI's
- Except for between 15:30 16:00 UTC
   NPOL RHI showed very thick bright-band
   And large drops measured by 2DVD
  - And large drops measured by 2DVD






## Application of the Method for Radar Data


- The DSD based separation technique can also be used to identify stratiform and convective rain regions from NPOL radar scans.
- First step  $\Rightarrow$  the estimation of N<sub>w</sub> and D<sub>m</sub>
  - ... but use an intermediate parameter,  $D_m'$ which depends on two (chosen) reference DSD moments. Here we use  $3^{rd}$  and the  $6^{th}$  moments.
- Scattering (T-matrix) calculations using 3-minute DSD spectra used to derive the retrieval equations.


## Application of the Method for Radar Data



Now apply these equations to NPOL RHI scans 'Zoom in' to the rain region (eg. < 3 km height)

## Application of the Method for Radar Data



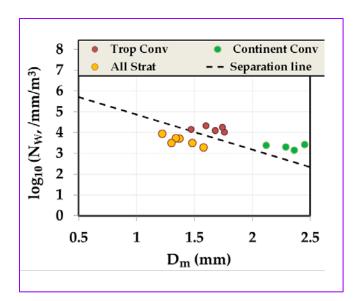


#### For 06 Sept. 2019 @ 11:29 UTC

- N<sub>w</sub> more uniform
- D<sub>m</sub> not so high
- Index *i* mostly negative
- N<sub>w</sub> D<sub>m</sub> points lie below the separation line

#### For 14 Oct. 2019 @ 05:31 UTC

- N<sub>w</sub> shows more variation
- D<sub>m</sub> > 2 mm in some regions
- Index *i* mostly positive
- N<sub>w</sub> D<sub>m</sub> points lie above the separation line


# Summary / Conclusions

- DSDs from disdrometer measurements have been used to separate stratiform and convective rain events at Wallops.
- Testing was done for three long duration events.
- NPOL-RHI scans confirm classification for most cases.
- For a 30 minute period during the Dorian rain-bands event
   wrong classification.... but large drops were measured during this time, and RHIs showed very thick bright band
- The separation technique can also be applied directly to NPOL scans; N<sub>w</sub>, D<sub>m</sub> retrievals have been developed.
- Two cases show promising results



#### Examples of available data from other locations also show this separation to be valid

|           |       | Site<br>(Disdrometer type)                        | <d<sub>m&gt; mm</d<sub> | Std dev. of<br>D <sub>m</sub> in mm | Log <n<sub>w&gt;</n<sub> | Std dev. of<br>log N <sub>w</sub> |
|-----------|-------|---------------------------------------------------|-------------------------|-------------------------------------|--------------------------|-----------------------------------|
| Tropical  | Conv  | Darwin (Joss)                                     | 1.68                    | 0.385                               | 4.1                      | 0.36                              |
|           |       | SCSMX (Joss)                                      | 1.76                    | 0.326                               | 4.03                     | 0.312                             |
|           |       | Papua New Guinea<br>(2DVD)                        | 1.47                    | 0.32                                | 4.15                     | 0.327                             |
|           |       | Florida (2DVD)                                    | 1.74                    | 0.49                                | 4.25                     | 0.52                              |
|           |       | TOGA-COARE (from airborne data)                   | 1.6                     | 0.34                                | 4.33                     | 0.4                               |
|           |       |                                                   |                         |                                     |                          |                                   |
| Continent | Conv  | Graz (2DVD)                                       | 2.12                    | 0.53                                | 3.39                     | 0.45                              |
|           |       | Sydney(Joss)                                      | 2.29                    | 0.51                                | 3.3                      | 0.34                              |
|           |       | Arecibo (Joss)                                    | 2.36                    | 0.17                                | 3.15                     | 0.27                              |
|           |       | Colorado (2DVD)                                   | 2.45                    | 0.58                                | 3.43                     | 0.38                              |
|           |       |                                                   |                         |                                     |                          |                                   |
| All       | Strat | Darwin (Joss)                                     | 1.37                    | 0.31                                | 3.72                     | 0.4                               |
|           |       | SCSMX (Joss)                                      | 1.34                    | 0.28                                | 3.73                     | 0.35                              |
|           |       | Papua New Guinea<br>(2DVD)                        | 1.22                    | 0.31                                | 3.94                     | 0.52                              |
|           |       | Florida (2DVD)                                    | 1.48                    | 0.34                                | 3.5                      | 0.48                              |
|           |       | TOGA-COARE (from<br>airborne data from<br>Testud) | 1.3                     | 0.28                                | 3.49                     | 0.5                               |
|           |       | Colorado(2DVD)                                    | 1.58                    | 0.3                                 | 3.28                     | 0.24                              |

