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Abstract: In this study, weighted model averaging (WMA) was applied to calibrate ensemble 

forecasts generated from the limited area ENsemble prediction System (LENS). WMA is an easy to 

implement post-processing technique that assigns greater weight on an ensemble member forecast 

that exhibits better performance; it was used to provide probabilistic visibility forecasting in the 

form of a predictive probability density function for ensembles. The predictive probability density 

function is a mixture of discrete point mass and two-sided truncated normal distribution 

components. Observations were obtained from Gimpo, Incheon, and Jeju International Airports and 

13 ensemble member forecasts derived from the LENS, for the period December 2018 to June 2019. 

Prior to applying to WMA, reliability analysis was conducted using rank histograms and reliability 

diagrams to identify the statistical consistency of ensembles with corresponding observations. The 

WMA method was then applied to each raw ensemble model and a weighted predictive probability 

density function was proposed. Performances were evaluated by mean absolute error, continuous 

ranked probability score, Brier score, and probability integral transform. The results showed that 

the proposed method provides improved performance compared to the raw ensembles, indicating 

that the raw ensembles are well calibrated by predicted probability density function.  

Keywords: probabilistic visibility forecasting; reliability analysis; tow-sided truncated normal 

distribution; weighted model averaging 

 

1. Introduction 

The aviation sector requires new high-quality forecast information for all types of weather 

conditions. In particular, it is difficult to provide high-quality information on weather variables (e. 

g., wind direction, wind speed, cloud altitude, visibility, etc.) directly related to aviation safety with 

existing numerical weather prediction (NWP) systems. Visibility is one of the important aspects of 

aviation weather. A lack of visibility is hazardous for airplane landing operations and can be 

detrimental for its management, as it can lead to delays and cancellations. Efforts have been made to 

produce more reliable and accurate prediction information based on the ensemble NWP system. 

However, the visibility forecasts generated from the NWP can be biased and dispersive, due to the 

limitations of the models. Therefore, deterministic and probabilistic forecasts can be applied to 

provide improved results by calibrating these uncertainties.  

Several methods for forecasting visibility and post-processing forecasts in short-time forecasting 

have been developed. Vislocky and Fritsch [1} compared the performance of observation-based, 

MOS-based, and persistence climatology models, for short-term deterministic ceiling and visibility 
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forecasts. Leyton and Fritsch [2,3] extended the observation-based approach using high-density and, 

later, high-frequency networks of surface observations, to produce probabilistic forecasts. Pasini et al 

[4], Bremnes and Michaelides [5], and Marzban et al. [6] applied neural networks for probabilistic 

visibility forecasting. Zhou et al. [7] described the use of a short-range ensemble forecast system to 

generate probabilistic visibility forecasts. Roquelaure and Bergot [8,9] and Roquelaure et al. [10] were 

the first to use Bayesian model averaging (BMA) in visibility forecasting. Their studies modeled 

binary low-visibility outcomes using a local ensemble prediction system at Charles de Gaulle Airport 

in Paris. However, none of the existing methods provides a general framework for generating a full 

predictive probability density function (PDF) for visibility. Chmielecki and Raftery [11] applied BMA 

for visibility, to probabilistic visibility forecasting, using a fully predictive PDF that is a mixture of 

discrete point mass and beta distribution components. BMA, introduced by Raftery et al. [12], helps 

in producing calibrated predictive PDFs for any weather parameter of interest. This method has been 

successfully used to generate probabilistic forecasts for temperature, sea level pressure, quantitative 

precipitation [13,14], wind speed [15,16], and wind direction [17]. 

We analyzed the probabilistic forecast of visibility using a statistical post-processing method 

based on the reliability analysis for ensemble forecasts of visibility. Various statistical post-processing 

techniques, for example, BMA [12] or ensemble model output statistics (EMOS [18]), are widely used 

to reduce systematic errors and uncertainties caused by initial conditions and parametrization in 

NWP systems[19, 16, 11, 20]. In addition, these methods can improve the accuracy by increasing the 

correlation between observations and ensemble forecasts, or by removing the existing biases. Among 

statistical post-processing methods, the most preferred method is to provide probabilistic forecasts 

that have a full probability distribution of an interest variable. The basic concept of probabilistic 

prediction is to derive probabilistic forecasts by applying a PDF to future weather variables for 

events, and to provide information on the magnitude of the occurrence and possibility of an 

interesting event (or threshold), through its probability generated from the predictive PDF. That is, 

the objective of probabilistic prediction is to reduce the variation of predictive distribution, hence 

leading to conformity between probability density functions of observations and those of 

corresponding ensemble forecasts [21, 22].  

In this study, we propose weighted model averaging (WMA) as a way of generating probabilistic 

forecasts for visibility. The basic concepts of the WMA model are almost the same as those of the 

BMA model, but provides an easier means to estimate parameters compared to the BMA. A detailed 

description is provided in Section 3. 

The remainder of this paper is organized as follows. In Section 2, we briefly describe the visibility 

forecasts generated by the LENS. In Section 3, we describe WMA WMA), and its application to 

visibility forecasting. The results of the method for daily 1 h forecasts of visibility are presented in 

Section 4. Finally, conclusions are presented in Section 5. 

 

2. Data  

Visibility data obtained from Gimpo, Incheon, and Jeju International Airports in South Korea, 

and 13 ensemble member forecasts derived from the LENS, a numerical forecast model operated by 

the Korea Meteorological Administration, were used in this study. Datasets of hourly visibility, 

precipitation, and relative humidity were obtained between January 1 2017 and June 30, 2019, and 

the ensemble forecast was conducted at 0000 UTC and 1200 UTC for projection times of 1 h, 4 h and 

24 h. Since the model resolution changed on November 29, 2018, only the datasets from December 

2018 to June 2019 were analyzed. The information on the observation stations is presented in Table 1.  

Prior to analysis, we checked the missing values of ensemble forecasts and their corresponding 

observations for the entire period. If either was absent, both were removed from the datasets. Because 

the property of visibility may vary depending on the season, therefore, to consider this seasonal 

characteristic, the datasets were converted into seasonal data (winter and spring) for three stations. 
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Table 1. Ensemble prediction system and stations used in the study. 

Ensemble prediction system Limited area ENsemble prediction System (LENS) with 13 ensemble members 

Data period 2018.12.01–2019.06.30 

UTC 00 UTC 

Projection time 4 h to 24 h 

Station 

Station Latitude Longitude 

Gimpo Int. Airport (110) 37.5 126.4 

Incheon Int. Airport (113) 37.4 126.7 

Jeju Int. Airport (182) 33.5 126.5 

Predictant Visibility (km) 

Predictors Visibility, relative humidity, and precipitation forecasts generated from LENS 

 

We first examined the empirical distributions of the observed visibility data and ensemble 

forecasts. Plots of the empirical distributions for Station 110 are presented in Figure 1. The first 

histogram presents the frequencies of all observed visibilities, and the second histogram shows 

frequencies only for observations below 10 km. The majority of all visibilities are recorded at exactly 10 

km (Figure 1(1)), which indicates that observation is censored at 10 km, even if the visibility measure is 

more than 10 km. In addition, this plot shows a mixture of discrete probabilities of point masses at 

visibilities of 10 km; therefore, a continuous probability distribution is appropriate. In Figure 1(2), the 

observations are highly discretized. A histogram of the ensemble forecasts is presented in the Figure 

1(3). The scales of the observation and ensemble forecasts vary considerably. Ensemble forecasts 

generate visibility values much greater than 10 km and are not constrained at 10 km, in contrast to 

values obtained from observations. In addition, ensemble forecasts are continuous and are skewed to 

the right. For the Stations 113 (Incheon) and 182 (Jeju), the empirical distributions of the observed 

visibility and ensemble forecast showed similar patterns as obtained at Station 110. 

 

 

Figure 1. Histograms of visibility observations and forecasts for the Station 110: (1) all observations, 

(2) observation < 10 km, and (3) ensemble forecasts.  

3. Materials and Methods 

To set up the probabilistic prediction model for visibility, the characteristics of data from 

observed visibility and from the corresponding ensemble forecasts should be considered. The 

observed visibility is censored at 10 km, while the corresponding ensemble forecasts generated from 

the LENS have positive real numbers. In other words, even if visibility was observed for more than 

10 km, the observed visibility was recorded as 10 km; in contrast, the corresponding values from the 

ensemble forecasts were used as they were generated. Therefore, we need a probabilistic model that 

reconciles the results obtained from these different datasets.  

In this study, we consider WMA, which models the predictive PDF of a weather quantity of 

interest y, as a mixture of the conditional PDFs. Let fk be the kth ensemble member forecast and 

hk(𝑦|𝑓𝑘) be a mixture of the conditional PDF given a specific forecast fk. The WMA predictive PDF 

is given by 
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          p(y|f1, 𝑓2, ⋯ , 𝑓𝐾) = ∑ 𝑤𝑘ℎ𝑘(𝑦|𝑓𝑘)𝐾
𝑘=1                         (1) 

                                                   

where wk is the weight of the kth ensemble member forecast, and refers to its relative skill over 

the training period. The weights are constrained to be non-negative and sum to 1. 

To determine the mixture of the conditional PDF hk(𝑦|𝑓𝑘), we consider a two-component model. 

The first part consists of a point mass at 10 km and corresponds to the probability that the recorded 

visibility is 10 km, which is conditional on the kth forecast in the ensemble. The second component 

of the model assigns a member-specific PDF to visibility, given that it is less than 10 km. We use a 

two-sided truncated normal distribution defined in (0, 10). 

First, we apply a logistic regression model to estimate the probability that the observed visibility 

is 10 km, given the forecast of the kth ensemble member fk, as follows 

 

logit P(y = 10|fk) = log
𝑃(𝑦=10|𝑓𝑘)

𝑃(𝑦<10|𝑓𝑘)
= 𝑎0𝑘 + 𝑎1𝑘𝑓𝑘                   (2) 

 

where a0k  and a1k  are regression coefficients, and these parameters are estimated from a 

logistic regression model using the member forecasts in the training period as predictors, and a vector 

of binary indicator of y=10 as the response variable.  

To predict visibility when the observed visibility is less than 10 km, we consider a two-sided 

truncated normal distribution. The observed visibility y has a normal distribution, with mean μ and 

variance σ2 defined for 0<y<10, and the PDF for 0<y<10 is given by  

p(y|μ, σ) =
∅(

𝑦−𝜇

𝜎
)

𝜎(Φ(
10−𝜇

𝜎
)−Φ(−

𝜇

𝜎
))

,  0 < y < 10                       (3) 

where ϕ(∙)  is the PDF of the standard normal distribution and Φ(∙)  is its cumulative 

distribution function.  

Combining the two components of the model, we build a final conditional PDF for visibility, 

given the kth ensemble member forecast as follows 

 

hk(𝑦|𝑓𝑘) = 𝑃(𝑦 < 10)𝑔𝑘(𝑦|𝑓𝑘)𝐼(𝑦 < 10) + 𝑃(𝑦 = 10|𝑓𝑘)𝐼(𝑦 = 10)          (4) 

 

where gk(𝑦|𝑓𝑘) is a member-specified truncated normal distribution. The final WMA model for 

the predictive probability density function of visibility y is given by 

 

p(y|f1, ⋯ , 𝑓𝐾) =  ∑ 𝑤𝑘[𝑃(𝑦 < 10|𝑓𝑘)𝑔𝑘(𝑦|𝑓𝑘)𝐼(𝑦 < 10) + 𝑃(𝑦 = 10|𝑓𝑘)𝐼(𝑦 = 10)]𝐾
𝑘=1           (5) 

where 

gk(𝑦|𝑓𝑘) =
𝜙(

𝑦−𝜇𝑘
𝜎𝑘

)

𝜎𝑘(Φ(
10−𝜇𝑘

𝜎𝑘
)−Φ(−

𝜇𝑘
𝜎𝑘

))

, 0 < 𝑦 < 10                           (6) 

 

with the mean μk = 𝑏0𝑘 + 𝑏1𝑘𝑓𝑘 , and standard deviation σk  of the truncated normal 

distribution.  

For the given observation of visibility less than 10 km, the parameters b0k and b1k, and the 

standard deviation σk are estimated using the method of maximum likelihood.  

The parameters w1, ⋯ , 𝑤𝐾  are estimated as follows: After estimating the parameter μk = 𝑏0𝑘 +

𝑏1𝑘𝑓𝑘, standard deviation σk, and probability that the observed visibility is 10 km given the forecast 

of the kth ensemble member fk  over the training period, the median value is derived from the 

truncated normal distribution based on Eq. (6) to estimate the visibility for less than 10 km. The 

corresponding estimates of observed visibility 𝐲 during the training period are obtained as 

𝐨 = [
�̂�11 ⋯ �̂�1𝐾 

⋮ ⋱ ⋮
�̂�𝑛1 ⋯ �̂�𝑛𝐾

] 
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where �̂�𝑖,𝑘 = {
10, 𝑃(𝑦𝑖 = 10|𝑓𝑖,𝑘) ≥ 0.5,

𝑚𝑒𝑑𝑖𝑎𝑛 𝑣𝑎𝑙𝑢𝑒, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
, i = 1, ⋯ , n, k = 1, ⋯ , K, and K is the total number of 

ensemble members and n is the total number of observations. We used mean absolute error (MAE) 

and non-negative least squares to determine the weights. w1, ⋯ , 𝑤𝐾 . The weight based on MAE is 

used to assign the largest weight to the ensemble member forecast with the smallest prediction error 

in the training period. In contrast, the weights based on non-negative least squares are determined 

by minimizing the weighted combinations 

 

�̂� = (�̂�1, ⋯, �̂�𝐾) = arg min ∑ (𝑦𝑖 − ∑ 𝑤𝑘�̂�𝑖𝑘
𝐾
𝑘=1 )2𝑛

𝑖=1 , wk ≥ 0, ∑ 𝑤𝑘
𝐾
𝑘=1 = 1.         (7) 

 

To select one of the two estimated weights, each prediction error is calculated for the training 

period, and then the weights 𝐰 = (w1, ⋯ , 𝑤𝐾) that provide the smallest prediction error are finally 

selected. 

 

4. Results 

We compared the performance of the models on the ensemble forecasts from December 2018 to 

June 2019. The point forecast from the WMA is obtained by evaluating the median of the predictive 

probability density function. Similarly, we take the median of ensemble forecasts to be the point 

forecast associated with the raw ensembles. In the calculation of prediction performances, all 

ensemble forecasts greater than 10 km were set to 10 km to facilitate the comparisons between WMA 

and ensemble forecasts. 

A rank histogram (RH) (Hamil 2001; Wilks 2011) was used to assess the reliability of visibility 

ensemble forecasts and their corresponding observations at the three stations. The RH is a very useful 

visual tool for evaluating the reliability of ensemble forecasts and for identifying errors related to 

their mean and spread.  

The RH for 13 ensemble forecasts and the corresponding observation visibilities for three 

stations, that is, (Gimpo (110), Incheon (113), and Jeju (183)) are presented in Figure 2. In general, the 

RH shows different trends and dispersions for each station. For Station 110 (Gimpo), an RH with high 

counts near the right extreme and low frequency counts near the left extreme presents a systematic 

error in the data of the ensembles; ensemble forecasts have a strong negative bias, which indicates an 

under-estimation. For Station 113 (Incheon), the RH shows nearly similar frequency counts at both 

extremes but has a slightly higher frequency on the right. This implies that the ensemble forecasts 

may be under-dispersive and have a weak negative bias. However, RH for Station 182 (Jeju) tends to 

have an almost uniform distribution, although it has a slightly higher frequency on the extreme left 

of the histogram. 

 
Figure 2. Rank histograms for Stations 110, 113 and 182. 

 

Table 2. Reliability index for each station. 
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Station 110 113 182 

Reliability index 0.837 0.375 0.261 

 

The reliability index (Delle Monache et al., 2006) was used to quantify the deviation of the rank 

distribution from uniformity. The reliability index (RI) is defined as,  

∑ |𝑝𝑘 −
1

𝐾
|

𝐾

𝑘=1

, 

where K denotes the number of classes in the rank histogram, and pk denotes the observed 

relative frequency in class k. If the ensemble forecasts and observations were obtained from the same 

distribution, the RI should be zero. The RI for each station in Figure 2 is listed in Table 2, and their 

values show that they are far from uniformity. 

To evaluate the reliability of the forecast probability of the ensemble forecasts, a reliability 

diagram was constructed. The reliability diagram is a highly useful tool that shows how often a 

forecast probability actually occurs. For accurate reliability, the forecast probability and frequency of 

occurrence should be equal, and the plotted points should align on the diagonal.  

The forecast probability of the ensemble forecasts can be obtained using a particular threshold. 

Since the observed visibility is curtailed at 10 km in this study, the occurrence of observed visibility 

is defined as 

oi = {
1, 𝑖𝑓 𝑦𝑖 ≥ 10
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                  (8) 

In addition, the forecast probability of ensemble forecasts is computed using 13 ensemble 

members generated from LENS  

𝑝(𝑦 = 10) =
𝑛𝑥

𝑛𝑡
,                                    (9) 

where nt and nx  denote the number of ensemble members and the number of ensemble 

members that are greater than or equal to 10 km, respectively. 

The occurrence of the observed visibility and their forecast probability defined in Eqs. (8) and 

(9) are calculated using a visibility ensemble forecast and its corresponding observation for each 

station. A reliability diagram is shown in Figure 3. In the figure, for Station 110 (Gimpo), the reliability 

curve is located above the diagonal line, which implies under-forecasting. This result is the same as 

that obtained for its RH. For Stations 113 (Incheon) and 182 (Jeju), the reliability diagram shows over-

confident forecasting, which indicates that the ensemble forecast is severely under-dispersive with 

respect to the forecasts of p(y = 10). Therefore, the reliability diagrams of all stations show poor 

performance. 
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Figure 3. Reliability diagram of binned forecast of P(y = 10) vs observed relative frequency of y =

10 for the raw ensembles. 

Prior to setting up a statistical model of ensemble member forecasts, we evaluated the prediction 

skills of ensembles. The measures used for comparing the prediction skills were the Brier score (Brier, 

1950; Murphy 1973) for the binary events y=10, continuous ranked probability score (CRPS), MAE, 

and root mean square error (RMSE). The Brier score (BS) is defined as the mean squared error of the 

forecast probability for y=10, as follows 

BS =
1

𝑛
∑(𝑝𝑖 − 𝑜𝑖)

2

𝑛

𝑖=1

 

where n is the number of observations, pi is the forecasted probability of P(y = 10), and oi is 

1, if y=10 and 0, otherwise. The BS takes a value in the range between 0 and 1 and the perfect BS has 

a value of zero. The CRPS (Grimit et al., 2006; Wilks, 2011; Gneiting and Reftery, 2007) is an accurate 

scoring rule, which is defined as 

crps(F, y) = ∫ (𝐹(𝑥) − 1(𝑥 ≥ 𝑦)2𝑑𝑥
∞

−∞

 

where F(∙) is the cumulative distribution function of the forecast, y is the observation, and 1(∙) 

is the indicator function. CRPS is a generalization of the MAE, and is a more general measure of 

model fit than the BS. 

The prediction skills of the ensemble forecasts are listed in Table 3. From the table, it can be seen 

that the prediction skills of Jeju International Airport (182) are superior compared to other stations in 

terms of the three scoring measures. This is similar to the results of the RH. As RH for Station 110 

(Gimpo) has a strong negative bias, this indicates that the corresponding prediction error is relatively 

larger than that of other stations. 

Table 3. Comparison of prediction skills of ensemble forecasts in terms of MAE, CRPS, and Brier score 

(BS) for all data. 

Station MAE CRPS BS 

110 (Gimpo) 3.248 2.651 0.422 

113 (Incheon) 2.135 1.655 0.281 

182 (Jeju) 1.004 0.885 0.213 

 

We applied the WMA model for each projection time to obtain the probabilistic forecast, and the 

prediction performance was evaluated by comparing the station and projection time. The results for 

Station 110 (Gimpo) on February 5, 2019, at projection times of 6 h, are shown in Table 4 and Figure 

4.  

Table 4. The WMA outputs. The member forecast, WMA median, WMA lower bound, and 

observation are in units of km. 
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Figure 4. WMA predictive probability density function (PDF) for Station 110. The vertical line at 10 

km represents the WMA probability of visibility of 10 km, the vertical line (red) is the verifying 

observation, the blue vertical line is the WMA forecast, and the green vertical line is the 10th percentile 

of the WMA predictive PDF. The thick curve is the WMA predictive PDF of visibility given that it is 

less than 10 km, and the thin curves represent the individual ensemble contributions toward the 

WMA. Dots represent the ensemble member forecasts. 

Table 4 lists each ensemble forecast and the corresponding WMA output details, and Figure 4 

depicts the WMA predictive PDF and contributions from the weighted ensemble PDFs. From Table 

4 and Figure 4, it can be seen that the range of ensemble forecasts was approximately in the range of 

0.9–3.0 km, and the verifying observation value was 7 km. Although the observation value lay outside 

the range of ensemble forecasts, it was within 80% of the central predictive interval provided by the 

WMA. 

The comparison of the prediction performances of the ensemble median and WMA median 

forecast for each station in terms of MAE, CRPS, and BS according to the seasons are listed in Table 

5. As shown in the table, although the prediction skills of the models differ slightly depending on the 

season, it can be seen that the prediction skills of the WMA forecast are better than those of the 

ensemble for all stations. Among them, it can be seen that the prediction error was significantly 

improved at Station 110, and the prediction error for Station 182 (Jeju) was less improved. These 

improvements can also be inferred from the results of the previous reliability analysis. Since RH for 

Station 110 had a strong trend (negative bias), this bias was significantly calibrated in the predictive 

probability model, whereas RH for Station 182 (Jeju) is generally uniform, indicating that it is 

relatively less calibrated for bias.    

 

Table 5. Comparison of prediction skills of WMA and ensemble forecasts according to the seasons. 

(a) 2018-19 December, January, and February (DJF) 

 MAE CRPS BS (y=10) 

Station Ensemble WMA Ensemble WMA Ensemble WMA 

110 2.842 1.610 3.914 2.806 0.355 0.211 

113 2.263 1.854 3.502 3.272 0.302 0.255 

182 0.967 0.942 0.901 0.776 0.223 0.196 

 

(b) 2019 March, April, and May (MAM) 

 MAE CRPS BS (y=10) 

Station Ensemble WMA Ensemble WMA Ensemble WMA 
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110  3.843 0.847 3.248 0.677 0.489 0.156 

113 2.048 1.272 1.607 0.909 0.274 0.181 

182 0.744 0.592 0.643 0.548 0.165 0.138 

 

We then assessed whether adding additional predictors result in improved WMA forecasts. 

The available independent variables (predictors) in this study are relative humidity and 

quantitative precipitation. A quantitative precipitation is mostly 0, which is not useful for 

estimating visibility. Therefore, only relative humidity is significantly associated with observed 

visibility, and we limit the inclusion to this additional predictor. 

We consider a relative humidity variable for inclusion in each component of the model. The 

model for binary outcome y = 10 is represented by  

logit P(y = 10|fk, 𝑟𝑘) = 𝑎0𝑘 + 𝑎1𝑘𝑓𝑘 + 𝑎2𝑘𝑟𝑘                      (10) 

where fk  and rk  are the member-specified visibility and relative humidity forecasts, 

respectively. Given that y < 10 , the mean and standard deviation of the associated member-

specific two-sided truncated normal distribution is specified as 

μk = 𝑏0𝑘 + 𝑏1𝑘𝑓𝑘 + 𝑏2𝑘𝑟𝑘 

and  

σk = 𝑐𝑘 

By inserting these two components into Equation (6), we consider the predictive PDF that 

takes into account the relative humidity variable.  

Table 6 lists the model performance scores for the WMA for visibility (denoted by WMA (vis)), 

the WMA for visibility and relative humidity (denoted by WMA (vis, rh)), and the raw ensembles. 

From the table it can be seen that the WMA models perform better than the raw ensembles across 

all scores; in particular, the WMA(vis, rh) model shows a slight improvement over the WMA(vis) 

model. Moreover, at Station 110 (Gimpo), it can be seen that the prediction error improved 

significantly; the prediction error was less improved for Station 182 (Jeju). The results show that it 

is similar to the reliability analysis that was mentioned above. We can see that the prediction 

performance in spring is better than that in winter, and this implies that prediction performance 

can be affected by season, that is, different prediction performances may be delivered according to 

the season.  

We then evaluated the performance of the complete predictive probability density function 

generated by the WMA model. Figures 5-10 show the verification RHs for raw ensembles, and the 

probability integral transform (PIT) histograms for the WMA forecasts for each station, for winter 

and spring during the test period. To generate the PIT histogram, each WMA cumulative 

distribution function was evaluated at the corresponding observation that was less than 10 km. For 

observation of 10 km, the resulting probability was sampled randomly from a uniform distribution 

in the interval between the quantity 1 − P(y = 10) and 1. 

Table 6. Comparison of model performance in terms of MAE, CRPS and BS. 

 2018-19 DJF 2019 MAM 

station 110 113 182 110 113 182 

MAE 

Ensemble 2.842 2.263 0.967 3.843 2.049 0.744 

WMA 
(vis) 1.610 1.854 0.942 0.847 1.272 0.592 

(vis,rh) 1.267 1.300 0.936 0.715 1.213 0.593 

CRPS 

Ensemble 2.342 1.882 0.901 3.248 1.607 0.643 

WMA 
(vis) 1.191 1.434 0.776 0.677 0.909 0.548 

(vis,rh) 0.898 0.901 0.786 0.545 0.855 0.459 

BS 

Ensemble 0.355 0.302 0.223 0.490 0.274 0.165 

WMA 
(vis) 0.211 0.255 0.196 0.156 0.181 0.138 

(vis,rh) 0.160 0.144 0.196 0.119 0.166 0.114 
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The PIT histogram for the test period was analyzed to evaluate the performance of the complete 

predictive PDF of the WMA models. Through the PIT histogram, we can analyze the improvement 

of the probabilistic forecasts generated by WMA models compared to the raw ensembles. The RH for 

raw ensembles and PIT histograms over the test period for each station in winter are presented in 

Figures 5–7.  

First, the RH for Station 110 (Gimpo Airport) shows that raw ensembles have a strong negative 

bias and weak under-dispersion. PIT histograms for the WMA forecasts have nearly uniform 

distributions, indicating that WMA models are well calibrated and showed substantial improvement 

over raw ensembles. In particular, in comparison to the WMA models, it can be seen that the WMA 

(vis, rh) model is more calibrated than WMA(vis). In the case of Station 113 (Incheon Airport), RH 

shows an under-dispersive and weak positive bias. However, the PITs for WMA forecasts indicate 

that these biases and dispersions are considerably reduced by the WMA predictive model. In 

addition, more uniform patterns of the PIT for WMA (vis, rh), indicate that the WMA (vis, rh) is 

calibrated fairly well. Jeju Airport (182) shows a slightly different pattern from the two stations. RH 

has a slightly higher frequency on the low extreme, but it shows an almost uniform pattern overall. 

Although there is not much change in the overall pattern for PIT, we can see that the extreme 

frequency is decreased by the WMA models. This indicates that the ensemble was less calibrated.  

Figures 8–10 show the PIT histograms for the WMA forecasts over the test period of spring. In 

Figure 10, the RH for Station 110 shows a strong negative bias, whereas PITs for the WMA forecasts 

show nearly uniform distributions, implying that the WMA is well calibrated over the range of the 

predictive PDF. As mentioned above, it can be seen that the WMA(vis, rh) model is better calibrated 

compared to WMA(vis). Station 113 has patterns that are almost similar to the results analyzed during 

spring. In the case of Station 182, it can be seen that the PITs in spring are much more calibrated in 

comparison to the PITs in winter. This implies that the prediction error improved significantly in 

spring compared to winter.  

 

 

Figure 5. Verification rank histogram for raw ensemble forecasts and PIT histograms for WMA 

models for Station 110 (2018-19 DJF)  
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Figure 6. Verification rank histogram for raw ensemble forecasts and PIT histograms for WMA 

models for Station 113 (2018–2019 DJF) 

 

 

Figure 7. Verification rank histogram for raw ensemble forecasts and PIT histograms for WMA 

models for Station 182 (2018-19 DJF) 

 

Figure 8. Verification rank histogram for raw ensemble forecasts and PIT histograms for WMA 

models for Station 110 (2019 MAM) 
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Figure 9. Verification rank histogram for raw ensemble forecasts and PIT histograms for WMA 

models for Station 113 (2019 MAM) 

 

 

Figure 10. Verification rank histogram for raw ensemble forecasts and PIT histograms for WMA 

models for Station 182 (2019 MAM) 

 

5. Conclusions 

As visibility is a risk to operations and management and causes airplane delays and 

cancellations, it is one of the important variables in aviation weather. Therefore, significant effort has 

been made to provide more reliable and accurate visibility forecasts based on ensemble numerical 

prediction systems. In this respect, this study provides a statistical post-processing method for 

verifying the performance of an ensemble prediction system, and calibrating the biases and 

dispersions existing in the ensemble prediction system.  

The characteristics of the data from ensemble member forecasts generated from the LENS and 

from observations were examined, and the bias and dispersion existing in the ensemble forecasts 

were analyzed to construct an appropriate statistical model. Based on these results, we suggested a 

simple WMA method that provides a fully predictive PDF, making it is easier to estimate the 

parameters of the model using 13 ensemble member forecasts and relative humidity generated from 

LENS. WMA is almost similar to BMA; however, WMA can estimate weights more easily.  

The resulting WMA predictive PDF was well calibrated with respect to the raw ensembles. The 

WMA model could resolve the problems arising from ensemble forecasts, including both systematic 

and random errors, and the discrepancy in scale between ensembles and observations. In addition, 
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we considered additional variables to increase the precision in WMA forecasts. We also wanted to 

use quantitative precipitation and relative humidity as these are the most informative variables 

available in our datasets; however most of the 3-h accumulative precipitation have a value of zero 

and therefore these could not be used. In this application, we found that the relative humidity forecast 

added some amount of information to the visibility forecasts compared to the use of only visibility 

ensembles. Because we did not compare the WMA and BMA results, we cannot predict the 

superiority of the prediction performances between these two methods; however, it is known that 

the WMA model has the advantage of being much easier to apply than the BMA model. In a further 

study, we will compare the performances between the two methods using various scoring rules. 

Finally, the method based on the research is expected to be useful for bias-correction of other aviation 

variables and for probabilistic forecast analysis. 
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