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Abstracts 

Present study compares the GEMANOVA with the ANOVA model on modeling 

complex data set from Design of Experiment (DoE) on the basis of model simplicity and 

ease of model interpretation. The study suggests that the GEMANOVA model, due to its 

multiplicative model structure, is easier to understand and interpret in contrast to the 

ANOVA model with many significant higher order interaction terms. The principle of 

parsimony states that upon others being equal, a simpler model is preferred over a more 

complex model. Since both GEMANOVA and ANOVA model showed equal 

predictability, the study concluded that the GEMANOVA model is the most 

parsimonious model, and hence can be a valuable tool when developing Quality by 

Design (QbD) design space. 
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1. Introduction 

Establishment of a design space, where critical formulation and process parameters are 

linked to critical quality attributes has become widely recognized as an important tool for 

building the quality into the product. Often the key critical parameters are identified in 

the risk assessment phase, and Design of Experiment (DoE) together with analysis of 

variance (ANOVA) are used in order to mathematically describing the relation between 

critical factors and responses. Though ANOVA has proved to be useful in describing how 

factors are related to responses, often the built traditional ANOVA model can be difficult 

to interpret due to the presence of higher order interaction terms (1). In the ICH Q8 
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guideline, the importance for the data analyst to understand the design space model has 

been emphasized (2).  

 A different model that is capable for analyzing DoE data is the generalized 

multiplicative analysis of variance (GEMANOVA) model. One of the differences 

between ANOVA and GEMANOVA models are that ANOVA model is an additive 

model, and the model starts with main factor terms followed by addition of more 

complex higher order interaction terms in order to fully explain the underlying data set. 

In contrast, GEMANOVA due to its multiplicative nature focuses on the higher order 

interaction term to start with, and additional components are added if a single component 

is insufficient in fully explaining the underlying data set. The basic model structure for a 

multilevel four factors one component GEMANOVA model is exemplified in equation 1: 

                     (1) 

where yijkl is the response element obtained when factor a, b, c and d are varied at level i, j, 

k, and l and eijkl is the residual element respectively. The simplicity of the basic 

GEMANOVA model structure in this example means that all response elements can be 

reproduced by multiplication of indices from three sets of loading vectors representing 

factor a, b, c and d. For an in-depth understanding of GEMANOVA model, the reader is 

referred to the work by Bro (3).  

 In many cases, it has been shown that same model predictability can be obtained 

when ANOVA and GEMANOVA models were built on the same data set (1, 4, 5). In 

such cases, the question often arises is which model should be chosen as the final model 

for modeling design space? In guiding model selection, the principle of parsimony (also 

known as Ockham’s razor) can be a valuable tool (6). In the context of model selection, 

the parsimony principle can be interpreted as when others being equal, a simpler model is 

more preferable over a more complex model. 

  In the present study, a DoE data set from solid dispersion development (7) is 

subjected to ANOVA and GEMANOVA modeling. The ANOVA and GEMANOVA 

models are subsequently compared in terms of ease of interpretability and model 

simplicity.  
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2. Materials and Methods 

2.1 Data set 

Solvent evaporation is one of the main methods for preparing solid dispersions. A 

previous study highlighted that the evaporation rate of solvent is determinant for drug 

physical stability upon storage (7). Beside from solvent evaporation rate, other studies 

have highlighted that other factors such as drug:polymer ratio  and polymer molecular 

weight have significant importance for the physical stability of the drug (8, 9).  The 

degree of crystallinity in solid dispersions can be quantified from polarized light 

micrograph using image analysis (7, 10), by calculating the percentage area coverage 

(PAC) according to equation 2: 

    
            

      
       (2) 

where Acrystalline and Aimage are the area of identified crystalline region and total image area 

respectively.  

 The data set originates from a full factorial design with four factors and two 

replicates at the corner points. The factors polymer:drug ratio, solvent evaporation 

temperature and polymer molecular weight are varied at two levels. The factors 

mentioned are related to preparation of solid dispersions, and the formulations are 

monitored under polarized light micrographs at day 1, 15 and 30 after their preparation 

see Table 1.  

Table 1: Summary of the factors and the levels of variation for DoE. Solvent 

evaporation temperature (Temp.), polymer molecular weight (Pmw). 

Factor Levels 

Polymer:drug 1:1 and 3:1 

Temp. 30 and 50 C 

Pmw 30000 and 1000000 

Day day 1, 15 and 30
 

 

 

 

 



4 
 

2.2 Model development 

ANOVA model was built using MODDE (ver. 9.0, Umetrics, Sweden). GEMANOVA 

model was built using Matlab (ver. 7.10, MathWorks, U.S.) and the PLS_Toolbox 

support (ver. 5.8 Eigenvector Research, USA). 

 The data set for the GEMANOVA model is arranged as 5-way array, where the first, 

second, third, fourth and fifth mode hold the replicate, polymer:drug ratio, solvent 

evaporation temperature, polymer molecular weight and storage days respectively. A 

constant constraint is applied on the first mode, since it was assumed that no significant 

effect exists in the replicate mode. The GEMANOVA model was built using the parallel 

factorial analysis (PARAFAC) algorithm. The number of significant components for the 

model is determined using a leave-one-sample out internal cross-validation approach by 

calculating the root mean square error of cross validation (RMSECV) (11). 

 The predictability of both models is determined by calculating the root mean square 

error of prediction (RMSEP) of center points in the DoE, which has been excluded from 

the modeling. 

 

3. Results and discussion 

3.1 The ANOVA model 

The ANOVA model suggests that all main factors are significant. Increasing the storage 

time (day) has the effect of increasing the degree of the crystallinity in the sample, while 

increase in polymer:drug ratio, solvent evaporation temperature, and polymer molecular 

weight have the opposite effect (Figure 1). In the built ANOVA model, third order 

interaction terms were found to be significant. Though the effect of varying the main 

factors on the degree of crystallinity in the formulations can easily be understood, 

interpretation of the higher order interaction terms can be difficult 
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Figure 1: Effect plot from the ANOVA model illustrating the effect of factor 

increase on the degree of crystalline percentage area coverage (PAC) in the samples. 

Polymer:drug ratio (PD), solvent evaporation temperature (Temp.), polymer 

molecular weight (Pmw).  

3.2 The GEMANOVA model 

Internal cross validation revealed that the one component GEMANOVA model yields the 

lowest RMSECV (data not shown), hence the basic model structure is the same as in 

equation 1. The loading plot (Figure 2) illustrates the effect of factors when varied from 

low to high level. The decrease in loading plots upon increase in polymer:drug ratio, 

solvent evaporation temperature and polymer molecular weight all suggest that the 

sample crystallinity will decrease (PAC will decrease) upon increase in the mentioned 

factors. The day loading plot showed the opposite trend. From the discussion above, it 

can be inferred that the conclusion from the GEMANOVA model is essentially the same 

as that for the ANOVA model with regard on the effect of variation of main factors on 

PAC. However, the GEMANOVA model is much simpler to understand as compared to 
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the ANOVA model because the model structure focuses on the effect of factor interaction 

to start with.  

 

Figure 2: Loadings from GEMANOVA model. Solvent evaporation temperature 

(Temp.), polymer molecular weight (Pmw). 

3.3 Model selection using the parsimony principle 

The RMSEP for ANOVA and GEMANOVA has calculated to 3.3 and 4.2 % respectively, 

and hence the two models are considered having equal predictability. The principle of 

parsimony then states that a simpler model is more preferable as compared to a more 

complex model. From a mathematical point of view, a simpler model is regarded as a 

model using fewer parameters. Since GEMANOVA model was based on 11 against 14 

parameters for the ANOVA model, it can be concluded that the GEMANOVA model is 

simpler from a mathematical and understanding point of view as compared to the 

ANOVA model.  

 

4. Conclusion 

GEMANOVA model when applied on the present DoE data set offers easier model 

interpretation and led to less complex model as compared to the ANOVA model. The 

multiplicative GEMANOVA model structure is of particular advantage when modeling 

complex DoE data set with higher order interaction terms present. The ease of model 
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interpretation and the simplicity of the GEMANOVA model make it a good candidate for 

establishing multivariate QbD design space.  
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