Characterization of Atmospheric Reactive Nitrogen Emissions from Global Agricultural Soils

Viney P. Aneja, William Schlesinger, Q. Li, Alberth Nahas, and William Battye
Department of Marine, Earth, and Atmospheric Sciences
North Carolina State University
Raleigh, NC 27695-8208, USA

for presentation at:
The 3rd International Electronic Conference on Atmospheric Sciences
November 16-27, 2020
Preamble

• Nitrogen is necessary to sustain all life and is required to sustain agriculture and the global food supply.

• Nitrogen emissions from agricultural (both crop and animal) sources have not been categorized well.

• Satellite measurements can now provide spatial and temporal global coverage for reactive nitrogen.
Population increase and use of nitrogen fertilizer (1900 to 2010)

International Fertilizer Industry Association
Terminology and definitions

- **Some examples**
 1. Important biomolecules containing N: chlorophyll, hemoglobin, all proteins, DNA, …
 2. Fertilizers: ammonia (NH$_3$), ammonium salts (NH$_4^+$), nitrate salts (NO$_3^-$), urea [(NH$_4$)$_2$CO]
 3. Nitrous oxide (N$_2$O) is radiatively active, but chemically and biologically inert
Introduction: The Nitrogen Cycle

The nitrogen cycle is the biogeochemical cycle by which nitrogen is converted into multiple chemical forms as it circulates among atmosphere, biosphere, hydrosphere and lithosphere ecosystems.

- The nitrogen cycle is the biogeochemical cycle by which nitrogen is converted into multiple chemical forms as it circulates among atmosphere, biosphere, hydrosphere and lithosphere ecosystems.
- Important processes in the nitrogen cycle include fixation, mineralization, assimilation, nitrification, and denitrification.

The nitrogen cycle in soils/water/biosphere and its connection with the atmosphere.

Global N_2O emission

N_2O
Nitrous oxide

The global budget for N_2O
~17 Tg N/yr

- In terrestrial ecosystems, N_2O is mainly produced in soils via nitrification and denitrification processes.
- There has been limited discussion on the importance of agriculture as a major contributor for the increasing atmospheric N_2O.

Source: 2006 IPCC
NH₃ Ammonia

Temporal trends of NH₃ concentration (between 2002 and 2013).

AG: Agriculture
BB: Biomass burning

The global budget for NH₃ ~53 Tg N/yr

Source: Warner et al., 2017
Source: Houlton et al., 2019
Global NO\textsubscript{x} emissions

NO
Nitric oxide

NO\textsubscript{x}

NO\textsubscript{2}
Nitrogen dioxide

Global distributions of the surface NO\textsubscript{x} emissions (in kg m-2 s-1) derived from an assimilation of OMI tropospheric NO\textsubscript{2} columns

The global budget for NO\textsubscript{x} \sim 53 Tg N/yr

Source: Miyazaki et al, 2012
Objectives

• Develop statistical models to predict Nr emissions and deposition from agricultural soils based on the physical-chemical properties

• Analyze the spatial distribution of global Nr emissions from agricultural soil

• Compare and contrast the results (both global and regional) with other model framework emission inventories
3. Methodology

- **Literature Reviews**
 - Identify important factors controlling Nr production in soil
 - Gather relevant data from literatures

- **R-Studio**
 - Statistical summary of collected data
 - Fit data with appropriate regression model with Nr emission as the response and other relevant factors as predictors
 - Model diagnostic

- **ILWIS 3.31 (GIS)**
 - Global dataset preparation
 - Map calculation: apply the model to predict the Nr emissions
Methodology – Statistical Model development

e.g. NH$_3$-STAT

Right skewed → Normal distribution
Statistical Models Based Observations

- **N₂O_STAT**

\[
N_2O \text{ emission} = (\exp [1.34 + 0.03 \times T_{soil} + 0.02 \times SM - 0.35 \times pH_{soil} + 0.0003 \times N \text{ input} + 0.46 \times Fertilizer \text{ type}]) \times \frac{28}{44}
\]

- **NH₃_STAT**

\[
NH_3 \text{ emission} = (\exp [-4.6 + 0.02 \times T_{soil} + 0.01 \times SM + 0.09 \times pH_{soil} + 1.2 \times \log(N \text{ input}) + 0.5 \times Fertilizer \text{ type}]) \times \frac{14}{17}
\]

- **NOₓ_STAT**

\[
NO_x \text{ emission} = (\exp [-6.2 + 0.02 \times T_{soil} + 0.02 \times SM - 0.13 \times pH_{soil} + 1.2 \times \log(N \text{ input}) - 0.07 \times Fertilizer \text{ type}]) \times \frac{14}{30}
\]

Tsoil refers to soil temperature (°C), SM soil moisture (%), N input is differentiated by synthetic (0) or organic fertilizer (1), and is expressed as kg N ha⁻¹ yr⁻¹. The units for predicted emission are kg N ha⁻¹ yr⁻¹.
Model validation for NH3_STAT against NH₃ emissions from field experiments

\[y = 0.6264x + 3.216 \]
\[R^2 = 0.6829 \]
\[\text{N}_2\text{O Results – Global} \]

- Total annual global \(\text{N}_2\text{O} \) emission from agricultural soil

This study:
3.75 Tg/year

EDGAR 2012:
4.49 Tg/year
NH₃ Results – Global

- Total annual global NH₃ emission from agricultural soil

This study:
13.9 Tg/year

EDGAR 2012:
33.0 Tg/year
NO\textsubscript{X} Results – Global

- **This study:**
 - Total annual NO emission from agricultural soil
 - 0.2 Tg/year

- **EDGAR 2012:**
 - 1.6 Tg/year
$\text{N}_2\text{O Results – Regional (US)}$

$\text{N}_2\text{O}_\text{STAT}: 0.35 \text{ Tg N yr}^{-1}$

$\text{EDGAR}: 0.43 \text{ Tg N yr}^{-1}$

$\text{EPA/USGS}: 0.46 \text{ Tg N yr}^{-1}$
Conclusions

- Three statistical models are developed, using only observations, for characterizing atmospheric Nr emissions from agricultural soils.

- Statistical models capture the spatial distribution of global Nr emissions by utilizing an observation-based approach, rather than emission factor and activity approach or inverse modeling approach.
Conclusions

- EDGAR has additional sources in their estimate, whereas our model is exclusive to emissions from fertilizer and manure applied as fertilizer.
- Data sets lies in the methodology of collecting the model inputs
- These statistical models only considers physicochemical variables of the emissions, excluding the soil management practices that might contribute to the emissions.
- Soil biological activity that represent the processes governing the Nr emissions was not included in the model
- Deposition analysis of Nr is currently in progress.
Acknowledgement

- Funding by Geophysical Fluid Dynamics Laboratory (GFDL), National Oceanic and Atmospheric Administration (NOAA) project NOAA CPO AC4
- Air Quality Research Group, North Carolina State University
- The 3rd International Electronic Conference on Atmospheric Sciences
Characterization of Atmospheric Reactive Nitrogen Emissions from Global Agricultural Soils