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Overview and Problem Statement

 Estimated to be around 6,000 amputations (National Amputee Statistical Database (NASDAB) )

 Although Upper Limb amputees make up small segment of amputees - they have high 
functional needs

 With Trauma reported as main cause of amputation

 Loss of upper limb is said to influence overall independence & ability to work 
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Overview and Problem Statement

Functional Prosthesis/Myoelectric Prosthesis Control Scheme
4

Pattern Recognition/Motion 
Intent Decoding Sequence



Overview and Problem Statement
 Current Limitations of Pattern Recognition Control:

- Intent decoders/Classifiers are trained via the ‘Supervised Learning’ framework -

thus, expert in loop required & lag time induced from training process

- Classifier degradation due to uncertainties i.e. electrode shift, physiological changes 

in stump etc

 Proposed Solution

- Design of Self Learning and Adaptive Controllers with ‘Unsupervised Learning’ 

framework which can help further enhance intuitiveness of prosthesis control and 

increase overall autonomy
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https://medium.com/the-21st-century/machine-
learning-a-strategy-to-learn-and-understand-chapter-3-
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Biosensors and Data Collection
 Electromyography (EMG)

Represent superimposed electrical manifestations of action potentials from motor neurons, and 

can be mathematically modelled using dipole theory as a continuous extracellular action 

potential from a multiple source as seen in equation 1:

Where 𝝓𝒆 is the time varying extracellular potential, 𝝈𝒆 is the conductivity of the extracellular 

medium, 𝝈𝒊 is the intracellular conductivity, 𝒂 is the radius of the fiber, 𝒕 is time, 𝒓 is the distance 

of the source excitation to the recording sensor, 𝒙 is a point in space within the fiber element,  

𝒂𝒙
− is the length of the anatomical fiber and 

𝝏𝑰𝑨𝑷

𝝏𝒙
is the dipole strength at a point along the fiber 

axis.

 EMG Sensors

The EMG instrumentation used for data acquisition by Li et al [1] was the Refa 128 high-density 

electrodes by TMS International BV, Netherlands, with 32 electrodes [2]. The acquisition 

electronics comprised of a bandpass filter in the 10-500Hz frequency range, 24bit resolution and 

a sample rate of 1024Hz.
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Biosensors and Data Collection
 Electroencephalography (EEG)

EEG signals occur from the synchronous neuronal firing of billions of pyramid-like cells within the 

skull of a human being. Using a combination of dipole theory, and assuming the forward EEG 

problem, a measured potential of an EEG signal can be formulated as follows :

Where s is the dipole source located within proximity of sphere of radius rs of moment q, boundary sphere rL, 𝜎𝐿
anisotropic conductivity within boundary sub-domain of L, 𝑓𝑛 is the EEG measurement for nth element in the 
infinite set, ∝ is the angle between the point S and measurement point x, 𝛾 is the angle between two planar 

vectors pairs of S & q and S & x, 𝑃𝑛 and 𝑃𝑛
1 represent the Legendre polynomial coefficient of the series.

 EEG Sensors

The 64 sensors EEG channel EasyCap, Herrsching, Germany, with the Al-AgCl electrodes and Neuroscan system 
version 4.3 was used. The EEG signals were band passed filters in the region of 0.05-100Hz with a sample rate of 
1024Hz. 
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Data Collection
 Simultaneous acquisition of EMG and EEG signals

 The Hand Open and Hand Close Gestures were used for the work done as part of 
this paper and represent key hand gestures in prosthesis control
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Proposed Self-Learning Architecture

 Assuming the acquisition of a bio-signal, the Self-Learning 

architecture comprising of an electrode selection process followed 

by a 3-phase self learning process as seen below:

0.1 Optimal Electrode Channel Selection

1. Feature Extraction and Fusion

2. Dimensionality Reduction

3. Iterative Clustering
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Proposed Self-Learning Architecture
0.1 Optimal Electrode Channel Selection

 A first stage dimensionality reduction process which was done using a 

greedy search algorithm termed Sequential Forward Selection (SFS)

 From which 10 optimal Electrodes were selected for both EMG(from 32) 
and EEG(from 64)
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Proposed Self-Learning Architecture

1. Automated Feature Extraction and Vector Fusion
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Proposed Self-Learning Architecture

2. Dimensionality Reduction
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Dimensionality Reduction with Principal 

Component Analysis (PCA)

Associated Steps:

- Mean Centring and Covariance Calculation

- Eigenvalues & Eigenvectors calculation, 

sorting and truncation

First 2 PC’s were selected which 

accounted for 95% of the info in the data

https://www.researchgate.net/publication/332536913
_Unsupervised_machine_learning_in_atomistic_simulati
ons_between_predictions_and_understanding



Proposed Self-Learning Architecture
3. Iterative Clustering

- Comparison Case Study involved two Unsupervised  learning methods; 

K-Means clustering and Gaussian Mixture Model(GMM)

No. of clusters = No. of hand gestures

Cluster assignment was run 5 times each with the model that produced lowest 

performance index J selected 
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Proposed Self-Learning Architecture

 Flow diagram of Self-Learning process
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Results
 For different sensor configurations i.e. EMG only, EEG only and EMG-EEG
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Possible Extension towards Adaptive 

Control
 Extension of Self Learning Control towards Adaptive Control

- Classifier Re-calibration to adapt to dynamic changes in the signal acquisition chain, 

which ultimately causes classifier degradation i.e. electrode shifts and physiological 

changes in stump

- The Self-learning process for classifier recalibration - thus a form of Adaptive Control, 

can be initiated in either of two ways:

*As an interrupt following a series of misclassified motion intents

*As an interval based re-calibration prompt
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https://www.embs.org/tbme/articles/limb-
position-tolerant-pattern-recognition-

myoelectric-prosthesis-control-adaptive-
sparse-representations-extreme-learning/



Conclusion and Further Work
Conclusion

- A 3-phase Self Learning Controller framework has been proposed to help reduce lag-time in 

the prosthesis controller customization

- The Self Learning Control scheme consists of Feature Extraction Stage, Dimensionality 

Reduction and Unsupervised Iterative Clustering

- The control architecture can also be extended towards an adaptive framework to minimize 

classifier degradation due to drifts and uncertainties

Further Work

- Validation of designed control architecture on a wider cohort of Transhumeral amputees

- Further formalisation of the prospect of the adaptive control framework
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