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Abstract: A smartphone-integrated, optical fiber sensor based on the force myography technique 

(FMG), which characterizes the stimuli of the forearm muscles in terms of mechanical pressures, 

was proposed for identifying hand gestures. The device flashlight excites a pair of polymer optical 

fibers and the output signals are detected by the camera. The light intensity is modulated through 

wearable, force-driven microbending transducers placed in the forearm, and the acquired optical 

signals are processed by an algorithm based on decision trees and residual error. The sensor 

provided a hit rate of 87% regarding four postures, yielding reliable performance with a simple, 

portable, and low-cost setup embedded on a smartphone. 
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1. Introduction 

Monitoring hand movements is essential for several technological applications, such as 

teleoperation of robots, rehabilitation of patients, and the implementation of intuitive user-system 

interfaces [1]. Although this task can be accomplished with glove-based sensors or optical tracking, 

myography techniques allow determining the forces and postures of the hand (or even the intentions 

of movement) in a precise and non-invasive way [1,2]. 

The force myography (FMG) was proposed as a mechanical counterpart to surface 

electromyography (sEMG). In the FMG, muscle stimuli are detected in form of radial pressures, 

enabling the identification of movements without using an exaggerated number of channels or 

intensive signals preprocessing [3]. The radial pressures from the forearm muscles generate 

modulated optical signals since the microbending of optical fibers causes loss of transmitted light 

intensity [4].  

Using such a phenomenon, a bench-top optical force myography sensor was proposed for the 

characterization of human hand movements. In previous works, an FMG system based on a bulky 

fiber optic sensor was developed, allowing the identification of up to 11 postures with an accuracy of 

99.7% [5,6]. The present study, however, aimed to develop a system based on a more accessible 

platform and with a simplified processing approach: an ubiquitous smartphone. Moreover, recent 

researches reveal an increasing trend of applying smartphone-based sensors to several areas 

including biomedical applications and mechanical structures monitoring [7–9]. Hence, with many 

emerging functions, such as image acquisition; light source; local processing; wireless 

communication; and so on, the smartphone platforms figure as highly versatile and promising 

hardware for sensing. 

In this work, an optical fiber force myography sensor embedded in a smartphone device is 

proposed characterizing human hand gestures. A mobile application for the acquisition, processing, 

and classification of the optical signal was developed and tested for evaluating its sensitivity and 
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temporal response. Subsequently, experiments were performed with four different hand postures 

and their classification was performed by an algorithm based on a decision tree. Finally, the hit rates 

of the classifier were quantified and their characteristic operating curves (ROC curve) were 

investigated to evaluate the sensor performance. 

2. Materials and Methods 

2.1. Experimental Setup 

The experimental setup, Figure 1, consists of a white LED that excites a pair of multimode 

poly(methylmethacrylate) (PMMA) optical fibers. The waveguides are attached to the user’s forearm 

by force-driven microbending transducers. The fibers’ end faces are positioned perpendicularly to 

the receiver, and the smartphone’s CCD camera captures image frames of the output light. Once both 

the light source and the camera are part of the smartphone, the optical coupling is done through a 

3D-printed case manufactured for the device. The hardware in which the system was integrated is an 

Android mobile with OS version 8.1. It contains a chipset Snapdragon 660 Qualcomm SDM660, 4 GB 

RAM, and a 12 Mp camera which is used for the frame acquisition at a resolution of 1280 × 720. 

 

Figure 1. Overview of the sensor system: LED (flashlight); MMF: multimodal PMMA optical fibers; 

CCD: charged coupled device camera. The microbending devices are attached to the forearm using 

Velcro straps. 

To determine postures and movements in a pre-defined set of patterns, an initial calibration 

must be performed for each user. These adjustments are indispensable due to the intrinsic 

singularities among subjects. A movement may demand a different degree of flexion for each person, 

for example, yielding variations of light intensity for the same movement [10,11]. As shown in Figure 

1, the two microbending transducers [6] are placed on extensor muscles of the forearm and tied with 

Velcro straps, applying a moderate preload and avoiding the discomfort of the user. Furthermore, 

the positioning of the transducers is performed by palpating the muscles, seeking to maximize the 

sensitivity regarding the tested movements. The experiments were performed accoding the Ethical 

Committee recommendations (CAAE 17283319.7.0000.5405). 

2.2. Application and Pattern Recognition 

The software for data acquisition and processing was developed on Android API 27, which is 

compatible with versions 8.1 and higher. Also, only standard Java and Android libraries were used 

to avoid compatibility errors and excessive processing by the device. Although there are many 

available image processing libraries, like OpenCV, for the approach used in this work the standard 

libraries performed well. Hence, the application has an intuitive interface and fast processing, whose 

main functionalities can perform satisfactorily in any ordinary smartphone. As soon as the main 

activity is started, the camera preview is started, showing the frames captured by the CCD. The 

application data processing is done in real-time, and the user can select the window resolution, frame-

sampling period, as well as the camera focus on the interface (parameters that can generate great 
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variability in measurements when not normalized). Such adjustments must be performed before 

starting a measurement, but can be modified during the experiment. Besides, the application also has 

a calibration mode that performs the routine of recording posture patterns. 

The frames are captures in bitmap format with a sampling interval T (ms); then, windows 

referring to the two optical channels sections are highlighted and these sub-bitmaps are analyzed for 

their intensity in RGB, 

I(xi, yi) = |Ri, Gi, Bi|, (1) 

Im =
∑ I(xi, yi)
n
i=1

n
, (2) 

where I(xi, yi) is the intensity of the i-th pixel of components Ri, Gi, Bi; n is the number of pixels 

contained in the bitmap. Thus, on the decimal basis, R, G, B ∈ [0, 255], then the intensity values can 

vary from 0 (black) to 441 (white). 

The application must be able to classify patterns in the pre-fixed set of postures according to the 

sampled intensity data. To perform this task, several algorithms could be used, for example, artificial 

neural networks that have already been used in past works [12]. However, a complex classification 

method comes up against the hardware and processing limitations of the smartphone. Hence, a 

simplified approach based on the normalized sample residue is proposed: it consists of calculating 

the residue for each sampled point to the calibrated postures and normalizing it by the total residue, 

Ri =
|Ii − Im| 

∑|Ij − Im|
, (3) 

where Ri is the normalized residue of an acquired data point Im to the i-th pattern; Ij is the j-th pattern. 

Essentially, the technique is based on a decision tree, where the decisions are made based on the 

minimal normalized residue. Such classifiers are used satisfactorily in several areas such as the 

classification of radar signals, character recognition, remote sensing, medical diagnostics, and speech 

recognition [13]. These classifiers show the ability to make a complex decision process into several 

simplified decision subprocesses, generating a solution that is simpler to interpret and to model. 

However, for the methodology adopted in this work, an extensive tree was not necessary, so that: 

level 0 is the root and level 1 is the target postures of the classification (Figure 2). This makes the 

classifier very fast, as required by the hardware. Nevertheless, such a technique allows that, while 

new postures are added and the sensor is used for other applications, subsequent tree levels can be 

added for further refinement of the classifier. 

 

Figure 2. Decision tree for the classification of postures (A, B, C, and D) through light intensity data 

(I1 and I2). 

3. Results 

3.1. Measurement of FMG signals 
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The application comprises 4 possible patterns for classification, and the postures chosen for 

carrying out the experiments are shown in Figure 3a. It is worth noticing that the sensor can be used 

to classify additional postures as long as there is no ambiguity between the intensity signals. The 

static calibration of the microbending transducer provided linear response to mechanical 

deformations and low hysteresis (Figure 3b), even for high amplitude stimuli.  

 

(a) 

 
(b) 

Figure 3. (a) Hands postures analyzed. A: hand closed; B: hand flat; C: hand flexed up; D: hand flexed 

down. (b) Optical response to a linear displacement performed by a micrometer attached to the 

mechanical transducer. The instrument was varied from 0 to 0.5 mm, then from 0.5 to 0 mm, such that 

the sensor showed approximately the same intensity response of ~ΔI/Δx=46 mm-1 for both directions. 

The intensity signals recorded in the calibration routine for a given measurement are shown in 

Figure 4. The user maintained each posture for ~2 s, while the sensor measured the average signals 

and saved the patterns A, B, C, and D, respectively. It is noticed that each posture presents a 

characteristic [I1, I2] pair, confirming that there are no apparent ambiguities between the patterns. 

Furthermore, in the present experiment, it was possible to observe good signal stability, with 

variations of < 1%. Although the presented data refer to a specific measurement, once the transducers 

are positioned in the same muscles on the user’s forearm and the setup operates with the same 

calibration, signals with the same characteristics are expected. 

 

Figure 4. Light intensity signals of the optical fiber channels over time. 

3.2. Gesture Classification 
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The main objective of the work was to produce a reliable sensor with an acceptable hit rate. 

Random sequences of movements were performed to obtain an estimate of the classifier performance. 

In total, 40 movements were performed in which the postures were maintained for approximately 2 

s, totaling 500 measurements (including posture transitions) with a sampling period of 100 ms. 

Regarding the classification threshold, an intensity cut-off limit of 8% was arbitrated to perform 

pattern recognition. The results of the experiments are shown in Figure 5a, where it is possible to 

verify an average hit rate of ~87%. Once the classification does not treat movements data as 

exceptional cases (but as ordinary posture points), mostly errors are perceived during posture 

transitions. Therefore, if those points were excluded in an intermediate treatment, the hit rate of the 

sensor would reach values close to 97%. 

 
 

(a) (b) 

Figure 5. (a) Confusion matrix. (b) ROC curves referring to posture classifications for different 

threshold limits (indicated in the ROC curve: A). 

Moreover, for the given data set, the receiver’s characteristic operating curves (ROC curves) 

were established to observe the classifier’s performance regarding the residual cut-off limit. These 

results are shown in Figure 5b. The curves were obtained taking into account the classification 

deviations of 3%, 6%, 8%, and 20%, in addition to the extreme values of 0% and 100%. It turns out 

that the curves are extremely close to the ideal (area below the curve close to 1), indicating that the 

classifier performs adequately. Furthermore, the intermediate points referring to the limits of 6% and 

8% present TPR (true positive rate) close to 1 to a FPR (false positive rate) below 0.5, confirming that 

the choice of the classification threshold of 8% is correct. Besides, there is also a sharp drop in the TPR 

for the lowest cut-off limit of 3%, while for the 20% limit the highest rate of false positives is obtained, 

as well as a too wide a range is verified. Although the ROC curves were constructed independently 

for each one of the postures, the classification of the patterns occurs together, so that the general 

classifier presents an even lower threshold than that verified for the isolated patterns. 

4. Conclusions 

A compact, versatile, and simple optical fiber force myography sensor based on a smartphone 

for the classification of gestures of the human hand was successfully developed. A 3D-printed case 

was manufactured to perform the optical coupling and to provide stable conditions for data 

acquisition and noise minimization. For the acquisition and processing of data, an Android 

application was developed to measure and classify the data. Next, a set of measurements with pre-

defined posture patterns were performed to test and validate the developed sensor, yielding a ~87% 

hit rate for identifying four hand postures. In future studies, the complete reconstruction of 

movements and the integration of the sensing system with actuators will be addressed. An approach 

with finite state machines [14] has been tested for monitoring movement sequences and has generated 

promising results. Hence, despite the general approach used in this work, the applications to sensing 

are numerous and extend from the assistance in physiotherapy sections to the advanced control of 

mechatronic devices. 
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