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Abstract: Recently, there is a big demand on contactless devices for health safety, therefore developing
a low-cost contactless breathing sensor will have a great benefit for many patients and healthcare
workers. In this paper, we propose a contactless sub-6 GHz breathing sensor with an implementation
using a low-cost USRP device B205-mini. A detailed performance analysis of the proposed system
with different sensor algorithms is presented. The proposed system estimates the channel phase shift
and detects the presence of low frequency oscillations in the estimated phase shift. Compared to
24 GHz or 77 GHz FMCW radar based systems using distance measurements, the proposed system
is simpler, can be built by using more economical RF components, and requires lower sampling
frequencies. Another key advantage of the proposed system is that, even a very narrow unused
frequency band is enough for the operation of the sensor. When operated at frequencies shared
by other devices, the proposed system can turn off the transmitter at randomly selected intervals
to detect the presence of other transmission activities, and then can switch to a different operating
frequency. We provide both Python and Octave/Matlab based implementations which are available
in a public GitHub repo.
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1. Introduction

Contactless vital signs detection, and measurement is important problem for nursing homes and
hospitals. There are various published papers using different kinds of radar techniques for contactless
measurements, as well as optical techniques which are contact based, see [1] and references therein.
In this paper, we propose a low-cost channel phase shift estimation based technique which can be
easily implemented using commerical of the shelf components and software defined radio (SDR)
devices, more specifically Universal Software Radio Peripheral (USRP) of type B205-mini.

Use of SDR and USRP devices for prototying radar systems is known for a long time,
see [2,3] and references therein. In [4], a wireless condition monitoring design is presented using
microelectromechanical system (MEMS) sensors, in [5], a continuous-wave (CW) radar based system
is proposed for contactless monitoring, and in [6], another contactless microwave sensor is proposed
for detection of vibrations. In [7], a digital signal processor system is proposed for Doppler radar
sensing of vital signs. In [8], a multi-antenna based contactless radar system is proposed for assessment
of human respiration patterns. In [9,10], two different 77 GHz systems are proposed for remote
monitoring of vitals signs. Finally, [11] has a sub-6 GHz based noncontact based vital signs sensor.
Contrary to many of reported systems, our proposed system is not based on distance measurements.
It is based on channel phase shift estimation, and does not require any kind of frequency sweep which
simplifies the RF subsystem considerably.
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This paper is organized as follows: In Section 2, we describe the experimental setup, and in
Section 3, we present the implementation details. In Section 4, proposed features are presented
with detailed analysis of the performance of single feature based classifiers. Finally, we make some
concluding remarks in Section 5.

2. Experimental Setup

Our experimental setup is shown in Figure 1: There is laptop computer running Linux,
a USRP-B205 mini, and two coffee can antennas. USRP-B205 mini is a sub-6 GHz device, and has a
tuneable phase-locked loop (PLL) controlled local oscillator (LO). In this paper, we set the LO frequency
to 3 GHz, however the LO frequency is a design paramater which will be investigated in a future
version of the paper.

Figure 1. Sub-6 GHz vital signs detector using a USRP B205-mini.

The high level system block diagram is shown in Figure 2. Basically, on the transmitter side the
signal xb(t) is chosen as a complex sinusoid of frequency approximately 20 kHz, and on the receiver
side yb(t) is the received baseband signal. The proposed vital signs detector estimates the phase shift
between xb(t) and yb(t) at a rate of 50 times per second, which is also a configurable design parameter.
The baseband sampling frequency is set as 4 MHz, and is two orders of magnitude larger than the
baseband analog signal frequency of 20 kHz.
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Figure 2. High level block diagram of the proposed system.

The phase shift, θ, is estimated by comparing the peak values of FFT’s of xb(t) and yb(t),
more precisely by division and conversion to polar format. Estimated phase shift values are then fed
to a single feature based detector system. Basically, we propose the use of two different features and
linear classifiers for vital signs detection. Estimation of vital parameters, like the breating rate, are not
addressed and will be investigated in a future version of the paper. In this paper, we focus on the
binary classification problem for vital signs detection.
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3. Implementation Details

Authors developed two different software packages for this research, which is available at the
public GitHub repo https://github.com/onurtoker/vitalSigns.

3.1. Python + UHD Driver Based Implementation

Our first approach is based on the UHD driver, and Python, and does not use any GNU Radio
package or MATLAB/Octave like high level tools. Compared to a GNU radio and MATLAB/Octave
based approach, it may be less user friendly, but it can show the estimated phase shift in a scope
like window in real-time. The current implementation available in the GitHub repo does not have
a specific real-time feature extraction and classification method coded, however all of these can be
added easily by using numpy and scipy libraries. For the research results presented in this paper,
we first recorded data, i.e., θ values, and then tested different features and classifiers using an offline
approach. In Table 1, we summarize the version numbers of the major software components used in
the Python + UHD driver based approach.

Table 1. Software versions.

Ubuntu 18.04.1
PyCharm 2020.1
Python 3.6.9
numpy 1.16.3
scipy 1.2.1

3.2. GNU Radio + Octave Implementation

Our second approach is based on higher level and more user friendly tools: GNU radio and
Octave. For the data transfer between a GNU radio graph and Octave script, we used the ZMQ library
which is a standard high-performance asynchronous messaging library. The GNU radio graph used
for this experiment is shown in Figure 3. The default transmitter frequency is 2.4 GHz, but we did all
experiments at 3 GHz. The optional XMLRPC block of the GNU radio allows the Octave script to the
change GNU radio graph parameters while the graph is running.

Figure 3. GNU radio graph with default parameters.

4. Proposed Features and Results

In this section, we will summarize the proposed features and the corresponding linear classifiers
for vital signs detection. In Figure 4 on the top, we have phase shift plots for 3 different positive cases,
i.e., when there is breathing activity in front of the sensor (Class 1). Plots shown at the bottom of
Figure 4 are for 3 different negative cases, i.e., when there is no motion or breating activity around the
sensor (Class 0). To be able to illustrate all data in fewer number of plots, we first remove the DC bias,
and then level shift all by a different amount to make sure that phase plots do not overlap. As it is

https://github.com/onurtoker/vitalSigns
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clear from Figure 4, phase plots for the positive cases (Class 1) look quite different compared to the
negative cases (Class 0).
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Phase plots for positive cases
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Phase plots for negative cases

Figure 4. Phase plots for 3 positive (top) and 3 negative cases (bottom). All after DC bias removal and
some level shifting.

4.1. Feature 1 (Local Variance)

Our first proposed feature is the variance of local Nc phase shift values, or in a real-time setting
variance of the latest Nc phase shift measurements. We have chosen Nc = 50, and Nc = 150,
and computed the variance of local/past Nc samples. In Figure 5, the variance is plotted as a function
of the sample index.

In Figure 6, histogram confusion plots for Nc = 50 and Nc = 150 are shown. The overlap is smaller
less for Nc = 150, however a design based on Nc = 50 uses measurements aquired within 1 s, whereas
Nc = 150 corresponds to 3 s. Hence, although Nc = 150 results a more reliable detector, in the event of
loss of vital signs, it is expected to respond after a longer delay compared to Nc = 50. Both reliability
as well as the response time in the event of loss of vitals signs are critical performance metrics.

The false alarm is defined as the detector output being “Class 0” although there are still vital
signs, and the miss is defined as the detector output being “Class 1” although there are no vital signs.
The optimal classifier will be the detector which minimizes the sum of PF, the false alarm rate, and PM,
the probability of miss. More precisely, it will be

If “Feature 1
′′ ≥ γ, then classify as Class 1,
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If “Feature 1
′′
< γ, then classify as Class 0.

where γ = 0.00200 and 0.00235 for Nc = 50 and 150 respectively. The value of γ is estimated as the
x−axis of the intersection of two Gaussian distrubitions in Figure 6.
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Figure 5. Feature 1: Blue is for Class 1, and red is for Class 0. On the top Nc = 50, and at the bottom
Nc = 150.
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Figure 6. Blue is for Class 1, red is for Class 0, and green are fitted Gaussian distributions. On the top
Nc = 50, and at the bottom Nc = 150.

4.2. Feature 2 (Ratio of Low Frequency Energy Content)

Our second feature is the percentage of energy (of the estimated phase shift signal, θ) which lies
between 0.35 Hz and 1.5 Hz. Note that the DC bias is always removed, and the end points of the band
0.35–1.5 Hz are design parameters that can be varied for further optimization.

In Figure 7, FFT plots for a positive and a negative case are shown, and it is clear that for the
positive case the frequency band [0.35, 1.5] Hz has much higher relative energy content compared to
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the negative case. Furthermore, the frequency at which the peak is observed can be used to estimate
the breating rate as well.
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Figure 7. FFT amplitude plots vs frequency: Red for class 0, and blue for class 1.

Basically, we define our second feature as

“Feature 2
′′
=

Energy of θ(t) in 0.35 Hz− 1.5 Hz
Total energy of θ(t)

and according to this definition, we get the values shown in Table 2.

Table 2. Feature 2 (Energy ratios).

Experiment No. Class Type “Feature 2”

1 Class 0 0.3699
2 Class 0 0.4555
3 Class 0 0.5833
4 Class 1 0.8067
5 Class 1 0.8354
6 Class 1 0.9283

In Figure 8, ”Feature 2” values are shown on a 1-D axis, which exhibits a very clear separation
between two classes.
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Figure 8. Feature 2: Red for class 0, and blue for class 1.

Our “Feature 2” based classifier is

If “Feature2
′′ ≥ γ, then classify as Class 1,

If “Feature2
′′
< γ, then classify as Class 0.

where γ is selected the average of class means, i.e., γ ≈ 0.65.
For this feature, histograms do not overlap and both distributions are well seperated from each

other. This is clearly better than the first feature, however computationally it is more demanding. If a
mobile low-power device is intented to be designed for vital signs monitoring, computational load
and associated increase in the power consumption may be a concern.

5. Conclusions

In this paper, we have presented a sub-6 GHz vital signs detector system and experimentally
analyzed its performance. We considered only the binary classification problem, and proposed two
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different features. Estimation of vital paramaters is not addressed, and will be considered in a future
version of the paper. Sensor fusion using both of these features will also be addressed in a future
version. Overall, use of the first or the second of proposed feature results an effective and low-cost
vital signs detection system. For both features, the histogram confusion plots imply low rate of false
positive and negatives.
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