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Abstract: Human intentions prediction is gaining importance with the increase of human-robot 

interaction challenges in several contexts, like industrial and clinical. This paper compares Linear 

Discriminant Analysis (LDA) and Random Forest (RF) performance in predicting the intention of 

moving towards a target during reaching movements, on ten subjects wearing four electromagnetic 

sensors. LDA and RF prediction accuracy is compared with respect to observation-sample 

dimension and noise presence, training and prediction time. Both algorithms achieved good 

accuracy, which improves as the sample dimension increases, although LDA presents better results 

for the current dataset. 
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1. Introduction 

Predicting human intentions by collecting and analyzing body signals is one of the main goals 

in human-robot interaction [1]. Accurate and real-time recognition of human motion intention could 

allow achieving suitable human-machine coordination [2] for both interactive robotic interfaces, like 

collaborative robots, and diagnostic systems, such as rehabilitation devices [3]. 

Several kinds of sensors are currently used to detect body signals, like surface electromyography 

[2,4], electroencephalography [3], and accelerometers. In recent years, research in human movement 

pattern recognition with the support of wearable sensors was widely conducted [2,3,5], also 

considering the effect of the positioning of the sensors in the obtained data [6,7]. Actually, wearable 

sensors allow noninvasive motion detection, full integration with commercially available devices [1], 

the possibility to acquire acceleration and velocity to reconstruct the detected movement [8], and the 

adaptation to inter- and intra-individual variability [9]. Since body signals are strongly affected by 

repeatability lack [2] and motion is subject-dependent, the challenge in predicting human intention 

even increases in specific scenarios, like in clinical environment, where the pathological subject can 

present peculiar motion patterns. In particular, laboratory-based optical motion analysis systems are 

widely adopted for periodical stroke condition assessment during rehabilitation [10] to obtain 

multiple bio-signals, useful in recognizing pathological symptoms and to improve the healing rate of 

rehabilitation [11]. Therefore, the knowledge of expected natural behavior and movement patterns 

for the healthy subject becomes crucial to perform a correct evaluation. 
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Among all the possible movements, the reaching task is fundamental for the activity of daily 

living [12] because of the relevance of its functional aim. 

Since many different strategies can be used to perform the same task [5,13], predictive models 

and machine learning algorithms are particularly suitable to analyze the signals and predict the 

movement intention [2]. Developing relevant working methodologies becomes necessary, and 

machine learning techniques can face the limit of small data amounts. Literature provides various 

examples of machine learning techniques applied to human motion analysis. For instance, in [14] 

Linear Discriminant Analysis (LDA), Support Vector Machine and k Nearest Neighbor algorithms 

have been applied for the identification of natural hand gesture, whereas Li et al. [15] exploited 

Random Forest algorithm to discriminate 8 different motions of the upper limb. 

This study aims to compare LDA and RF machine learning techniques performance in predicting 

the subject’s intention of moving towards a specific direction or target in the illustrative scenario of a 

reaching movement, using data gathered from wearable electromagnetic sensors. 

2. Materials and Methods 

2.1. Participants 

A convenience sample of ten healthy subjects (9 right-handed) were recruited from January to 

October 2009. Inclusion criteria were: (i) age over 18 years old, (ii) no current or previous neurological 

or orthopedic pathology of the upper arm. The study was approved by CPP Ile de France 8 ethical 

committee; recruited subjects gave a written informed consent to study participation, and procedures 

were conducted according to the Declaration of Helsinki. 

2.2. Protocol 

Testing sessions were performed during the morning, in the same environmental conditions. In 

each session, after a first preliminary trial for procedure familiarization, the operator asked the subject 

to perform six repetitions of unilateral sitting reaching movement, three with the right arm and three 

with the left arm. As depicted in [16], each subject was asked to perform the movement 3 times for 

each combination of direction (internal, middle, external), quote (high, low), and distance (close, far). 

The order of the target submitted to the subjects was standardized: close-middle (CM), far-

internal (FI), high-external (HE), far-middle (FM), close-external (CE), high-internal (HI), close-

internal (CI), far-external (FE), high-middle (HM). The subjects were required to touch each target 

with the provided pointer and coming back to the initial condition, moving at a comfortable speed. 

2.3. Experimental Setup 

Subjects were seated on a chair, adjusted so that the table was at the navel level. They wore a 

wrist splint to which a pointer was rigidly attached to simulate an extended index finger. The 

subjects’ trunk was fixed to the chairback using a wide strap. For each subject, four electromagnetic 

sensors were placed by a trained operator on i) acromion, ii) upper third of humerus, iii) wrist dorsum 

and iv) manubrium, respectively. During the acquisitions, the Polhemus Fastrak electromagnetic 

tracking system was used, which provides the position and orientation of each sensor as timestamped 

vector triplets (X, Y, Z) and (α, β, γ), at an output frequency of 30 [Hz] [17]. The system presented a 

Root Mean Square (RMS) static accuracy is 0.8 [mm] for X, Y, and Z receiver position, and 0.15° for 

receiver orientation, whereas the resolution is 0.0005 [cm/cm of range] and 0.025°, respectively. 

Nine targets were positioned along three directions: (i) middle, on a parasagittal line emanating 

from the subject’s shoulder, (ii) internal, and (iii) external, inclined of ±45° with respect to the 

parasagittal line. Targets were composed of red tape of 10 [mm] with a vertical stick of 15 [mm] of 

diameter. Figure 1 depicts the experimental setup. Distances between targets and subject were 

parametrized with respect to the anatomical upper limb length, i.e., the distance between the 

acromion and the end of the pointer. Two distances were considered: (a) far, corresponding to 90% 

of the total upper limb length, and (b) close, equal to 65% of the upper limb length. Six targets were 
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placed at 70 [mm] of height from the table level and three were placed above the distal sensor, at the 

same quote of the acromion from the table surface. 

 

Figure 1. Experimental setup schematization for the initial condition: subject’s hand is aligned to the 

shoulder, placed on a red cross on the table plane, the forearm is mid-prone, the elbow flexed to 90° 

and the humerus positioned along the vertical direction. 

2.4. Data Treatment 

Data were elaborated in MATLAB environment using only the information coming from a first 

sample of the acquired data. To create a dataset of comparable data among trials and among subjects, 

the acquired signals were trimmed to the actual movement portion. To identify motion starting and 

ending points, the absolute value of the velocity of the hand has been considered. Therefore, the 

absolute value of the hand position was calculated for each instant t, and the velocity was then 

computed according to a two-point derivative approximation. According to literature [19,20], the 

velocity was filtered with a fourth-order zero-phase low-pass Butterworth filter to remove noise, and 

a cut-off frequency of 3 Hz has been selected for the filter [20]. The subject resting condition was 

identified as the mean value of the first and last ten acquired data samples, corresponding to an 

interval of 0.33 [s]. The starting and ending point of the movement were automatically selected by a 

custom-made code, as the first and last time instant in which the absolute value of the position first 

derivative is higher than a selected threshold. This threshold is iteratively identified comparing the 

variance of the observation sample with the variance that the subject presents at the resting condition: 

if the variance is higher than 5 × 10−3 [mm], the threshold values is reduced of 1 × 10−3 [mm]. Acquired 

data were then normalized in amplitude with respect to subject anthropometric quantities, computed 

for each patient from hand, arm and shoulder positions. 

The relative sensors distances shoulder-to-trunk, arm-to-shoulder and hand-to-arm along the 

subject resting phase were computed for each trial. For each subject, the average values of these nine 

quantities were calculated and used as reference values for the data normalization. To simulate data 

coming from accelerometers placed on subjects, the second derivative of sensors position were 

computed applying twice the two-point derivative and filtering the result. 

Linear and angular position, velocity and acceleration signals were analyzed to identify a set of 

features for the implementation of the machine learning algorithms, and a portion of the overall 

motion has been considered as Observation Window (OW). Since the motion duration is unknown 

in advance, subject- and trial-dependent, two approaches were used to evaluate the OW size: (i) 

custom window, computing an observation time for each trial using the information on the motion 

length, and (ii) average window, exploiting all the available data of all the subjects to compute a fixed 

OW. The evaluated features are the minimum, maximum and root-mean-square of: (i) sensors 

position (SP) components, (ii) sensors velocity modulus, or first derivative of SP, (iii) sensor 

acceleration modulus, or the second derivative of SP and iv) Euler angles, respectively. For each trial 

and subject, the computed features were rescaled to [−0.80, +0.80]. 

LDA and RF algorithms were implemented and trained using respectively the 85% and 90% of 

the data; in both cases, the data chosen for the training phase were randomly selected. In the testing 

phase, the remaining 15% and 10% of the dataset were used for LDA and RF, respectively. Twenty 
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different combinations of these parameters were tested; Table 1 depicts the selected features in the 

conducted tests. Two different conditions were evaluated for the OW size: 1/10 and 1/7 of the total 

motion time length. The first ten tests use the custom average approach, whereas the remaining the 

custom window one. For each test, both the machine learning algorithms were tested. To analyze the 

algorithms robustness, the same tests were repeated adding Gaussian Noise (noise samples power 

0.04 [dBW], load impedance 0.4 [ohm]) to the recorded data before computing the features. 

Table 1. The selected features in the conducted tests. In the table, tests with an OW width of 1/7 of the 

Table 1. are in regular type. 

Tests 
Sensors  

Position (SP) 

Sensors  

Velocity 

Sensors 

Acceleration 

Sensors 

Euler Angles 

1, 6, 11, 16 x x   

2, 7, 12, 17 x x  x 

3, 8, 13, 18 x    

4, 5, 9, 10, 14, 15, 19, 20   x  

LDA and RF algorithms prediction accuracy were computed and compared with respect to data 

sample dimension, number of considered features, and OW type. Accuracy was computed according 

to [21,22], and in the case of RF accuracy, the out-of-bag (OOB) approach was also used. 

3. Results 

Table 2 depicts all the obtained results, averaged over 200 consecutive tests. Considering the OW 

equal to 1/10 of the total movement (average time length of 0.27 [s]), LDA presents in the best case an 

accuracy in the intention prediction of 86.13%, with a Standard Deviation (SD) of 0.036, and RF an 

accuracy of 73.73%, with a SD of 0.015. Increasing the sample at 1/7 of the motion (average time length 

of 0.37 [s]), the intention prediction accuracy rises at 92.80% with a SD of 0.027 for LDA, and 84.60% 

with a SD of 0.010 for RF. Comparing results obtained from the analysis of data with and without 

noise, LDA presents a maximum difference equal to −1.53% and an average difference of −0.61%; 

these values decrease to −1.28% and −0.43% respectively for RF. Finally, RF algorithm demands an 

average training time of 1.14 [s] (range: 0.87–1.88), which decreases to an average value of 0.078 [s] 

(range: 0.035–0.28) for LDA. The prediction time has been computed only for the tests with higher 

accuracy, i.e., tests 1, 2, 6 and 7. The average prediction time is 31 × 10−4 [s] (range 30 × 10−4–33·10−4) 

for RF and 11 × 10−5 [s] (range 10 × 10−5–12 × 10−5) for LDA. 

Table 2. Obtained results in RF and LDA algorithms: ori_sgn is the original signal, sgn_N the original 

signal plus the Gaussian Noise contribute. Results are averaged over 200 consecutive tests. 
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1 72.85% 0.032 49.40% 0.017 23.45% 81.00% 0.042 57.04% 0.056 23.96% 

2 73.73% 0.015 57.48% 0.015 16.25% 86.13% 0.036 68.73% 0.044 17.40% 

3 61.78% 0.016 47.91% 0.017 13.87% 73.11% 0.045 53.12% 0.053 19.99% 

4 59.71% 0.015 58.71% 0.014 1.00% 58.27% 0.054 57.40% 0.049 0.87% 

5 71.97% 0.013 70.69% 0.013 1.28% 73.56% 0.047 72.81% 0.047 0.75% 

6 82.92% 0.011 70.10% 0.014 12.82% 88.97% 0.032 81.07% 0.044 7.90% 

7 84.60% 0.01 76.38% 0.014 8.22% 92.80% 0.027 86.60% 0.038 6.20% 

8 76.58% 0.013 69.69% 0.014 6.89% 85.45% 0.041 76.36% 0.044 9.09% 
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9 64.48% 0.016 64.34% 0.016 0.14% 63.84% 0.054 63.26% 0.052 0.58% 

10 75.70% 0.012 75.68% 0.011 0.02% 78.82% 0.045 78.76% 0.044 0.06% 

11 68.04% 0.015 49.55% 0.017 18.49% 78.80% 0.041 57.47% 0.049 21.33% 

12 71.40% 0.015 58.21% 0.016 13.19% 83.26% 0.042 71.17% 0.05 12.09% 

13 60.05% 0.016 50.04% 0.017 10.01% 69.56% 0.049 54.78% 0.045 14.78% 

14 60.92% 0.015 60.69% 0.016 0.23% 59.57% 0.054 58.65% 0.05 0.92% 

15 72.57% 0.013 72.47% 0.013 0.10% 74.09% 0.048 74.31% 0.043 -0.22% 

16 80.27% 0.012 65.22% 0.015 15.05% 86.80% 0.04 74.97% 0.045 11.83% 

17 82.88% 0.013 74.31% 0.013 8.57% 90.61% 0.034 84.06% 0.041 6.55% 

18 73.65% 0.012 66.25% 0.014 7.40% 81.15% 0.044 73.81% 0.047 7.34% 

19 66.26% 0.014 65.80% 0.015 0.46% 70.04% 0.048 69.62% 0.045 0.42% 

20 78.17% 0.011 77.99% 0.011 0.18% 83.59% 0.04 82.06% 0.044 1.53% 

4. Discussion 

Comparing the intention prediction performance of the algorithms with respect to the OW size, 

better results were obtained when larger windows were considered. Nevertheless, a reasonable limit 

should be imposed to the window size to avoid that the intention is predicted when the movement 

is close to its end. For features regarding Euler angles, sensor position and speed, as the window 

width increases from 1/10 to 1/7, accuracy improves by more than 10% for both algorithms, in all the 

tests. When acceleration features are considered, the improvement achieved by a wider OW is about 

5 percentage points, with a SD close to 1%. This behavior can be likely explained considering that the 

features calculated on the acceleration are subjected to the noise generated by the double derivation. 

Nevertheless, it represents a qualitative estimation of the results that the algorithms could provide, 

processing acceleration data from an accelerometer or inertial measurement units (IMU). This 

interpretation is supported by the results of the noise-added data: in those tests where the 

acceleration features are considered, noise does not affect significantly the accuracy. This could be 

justified by the fact that the computed acceleration signal is already noisy. Focusing on the time 

dimension, LDA reveals considerably shorter training times than RF. To decrease RF training time, 

the number of trees in the forest can be reduced: a preliminary analysis revealed that after about 40 

trees, the accuracy of the algorithm tends to a horizontal asymptote. In the same way, LDA presents 

significantly shorter prediction times than RF in all the tests. 

5. Conclusions 

This paper investigates the human reaching movement comparing the performance of LDA and 

RF to predict subjects' intention of moving towards a specific direction or target, when analyzing data 

gathered from wearable electromagnetic sensors. A campaign on ten healthy subjects was performed, 

and features on measured and computed signals were evaluated. The analyses revealed that the OW 

size is a crucial quantity: the wider the window, the better the prediction performance. The 

introduction of noise does not significantly affect the prediction performance of both the algorithms 

when acceleration features are also considered. For both machine learning techniques a good 

accuracy is demonstrated, although LDA presents more promising results in terms of accuracy, 

training time and prediction time with the current dataset. 

Further experimental campaigns, including different kinds of sensors or their positioning 

strategies, are currently under evaluation. In fact, actual acceleration data gathered from 

accelerometers and/or IMU inertial sensors would allow an experimental validation of the 

hypotheses about the acceleration features. Besides, the employment of different wearable sensors 

could make the acquisition system less invasive for the subject and more flexible, promoting for 

instance the use of widely spread and cheaper electronic devices, like smartphones or smartwatches. 
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