

BACKGROUND

- Sedentary time, especially prolonged sitting time, has been shown to have negative consequences on an individual's health, even if they regularly exercise [1].
- In order to combat excessive sedentary time, as well as recording the amount of movement one achieves throughout the day, many consumers are turning to activity trackers to help achieve better overall health [2].
- Use of activity trackers has exploded in popularity in the recent years. It's estimated that 368.2 million wearables will ship in 2020 [3].
- Use of an activity tracker has been shown to increase movement and physical activity for some individuals, but abandonment of these devices is high [4,5].
- Health and fitness professionals are often asked "Which device should I purchase?" and "How accurate are the devices?"⁴ It has been noted that if a device is perceived as more accurate, it has a higher adoption and usage rate [6,7].
- Though many devices have been studied across a variety of conditions[8], no study to date has looked at the accuracy of these devices while riding a motorcycle.

Step Count Accuracy of Several Commercial Activity Trackers While Riding a Motorcycle

Rieck, Thomas M.¹, Rieck, Katie M., M.D.². 1: Mayo Clinic Healthy Living Program, Department of Internal Medicine. 2: Division of Hospital Internal Medicine. Mayo Clinic, Rochester, Minnesota, U.S.

STUDY AIM

To determine whether several commercially-available activity trackers will misclassify movement from riding a motorcycle as step activity

DEVICES

Fitbit Charge HR

Fitbit Zip

METHODS

PROCEDURE:

• For all trials, the motorcyclist wore the Apple Watch® (Generation 1) on their dominant hand, the Fitbit Charge HR® was worn on their nondominant hand, and the Fitbit Zip® was placed in their left pocket.

• Height and weight, along with sex, birth date, and dominant hand, were entered into each device via the corresponding phone application.

• Before riding the approximate 28 mile route, the motorcyclist sat astride the motorcycle, with both feet on the ground and each hand on the handlebar. The displayed device step counts were recorded.

• The motorcyclist then rode the route, riding within the prescribed traffic control and speed limits, until reaching the midpoint of the trial.

• At the midpoint, and without removing his hands from the handlebars or dismounting the motorcycle, the displayed step counts were recorded.

• The motorcyclist then rode back to the starting point, again not moving from the riding position, where the final step counts were recorded.

• Ten total round-trip trials were complete.

DATA ANALYSIS:

• The difference between the number of steps measured by the device and the actual number of steps taken by the motorcyclist (zero in all cases) were recorded.

RESULTS

- steps.
- be 100%.

TABLE

All trials

Apple Watch Fitbit Charge HR Fitbit Zip

TABLE 2: MEAN STEP DIFFERENCE "Out" Po

Apple Watch Fitbit Charge Fitbit Zip

TABLE 3: MEAN STEP DIFFERENCE

"Back" Pc

Apple Watch

Fitbit Charge

Fitbit Zip

• The mean number of steps miscounted by the Apple Watch was 12.9 steps, while the range varied from 0 to 53 steps. The Apple Watch completed one trial portion without miscounting any steps.

• The mean number of steps miscounted by the Fitbit Charge HR was 211.0 steps, while the range varied from 136 to 323 steps.

• The mean number of steps miscounted by the Fitbit Zip was 305.3 steps, while the range varied from 20 to 811

Because the actual step count was equal to zero in all cases, the mean absolute percent error (MAPE) for the Apple Watch, Fitbit Charge HR, and the Fitbit Zip would

1: MEAN STEP DIFFERENCE							
5	Mean	Standard Deviation	<i>P</i> Value	Range			
ו	12.9	15	.011	0 to 53			
9	211.0	53.1	<.01	136 to 323			
	305.3	309.3	<.01	20 to 811			

ortion	Mean	Standard Deviation	Range
	19.2	20	0 to 53
e HR	189.2	45.8	136 to 226
	149.8	121.9	20 to 291

ortion	Mean	Standard Deviation	Range
	6.6	3.4	2 to 11
HR	232.8	55.3	180 to 323
	460.8	374.1	55 to 811

DISCUSSION

- moderate distance.
- trials.
- to the other two activity trackers.

CONCLUSIONS

- miscounted steps [11,12].

REFERENCES

Conflict of interests: The authors declare no conflict of interest. There was no funding supporting the data collector or writing of this manuscript. 1: Biswas, A., Oh, P. I., Faulkner, G. E. et al. Sedentary time and its association with risk for disease incidence, mortality, and hospitalization in adults: a systematic review and meta-analysis. Annals of *internal medicine* **162**, 123-132 (2015). 2: Gandhi, M. & Wang, T. The future of biosensing wearables. San Francisco: Rock Health (2014). 3. Statista. Forecast Wearables Unit Shipments Worldwide from 2014 to 2023, https://www.statista.com/statistics/437871/wearables-worldwide-shipments/> (2013). 4. Segar, M. L. ACTIVITY TRACKING+ MOTIVATION SCIENCE: Allies to Keep People Moving for a

Lifetime. ACSM's Health & Fitness Journal 21, 8-17 (2017). 5. Lazar, A., Koehler, C., Tanenbaum, J. et al. in Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiguitous Computing. 635-646 (ACM). 6. Gaz, D. V., Rieck, T. M., Peterson, N. W. et al. Determining the Validity and Accuracy of Multiple

Promotion **32**, 1671-1678 (2018). 7. Trommler, D., Attig, C. & Franke, T. Trust in activity tracker measurement and its link to user

acceptance. Mensch und Computer 2018-Tagungsband (2018). 8. Bunn, J. A., Navalta, J. W., Fountaine, C. J. et al. Current state of commercial wearable technology in physical activity monitoring 2015–2017. International journal of exercise science 11, 503 (2018). 9. Chowdhury, E. A., Western, M. J., Nightingale, T. E. et al. Assessment of laboratory and daily energy expenditure estimates from consumer multi-sensor physical activity monitors. *PloS one* **12**, e0171720 (2017).

10. Toth, L. P., Park, S., Pittman, W. L. et al. Validity of activity tracker step counts during walking, running, and activities of daily living. Translational Journal of the American College of Sports Medicine **3**, 52-59 (2018).

11. Thomas, D. M., Martin, C. K., Lettieri, S. et al. Can a weight loss of one pound a week be achieved with a 3500-kcal deficit? Commentary on a commonly accepted rule. International Journal of Obesity **37**, 1611 (2013).

12. Jette, M., Sidney, K. & Blümchen, G. Metabolic equivalents (METS) in exercise testing, exercise prescription, and evaluation of functional capacity. Clinical cardiology 13, 555-565 (1990).

• This study, the first of its kind known to the authors, investigated the accuracy of several commerciallyavailable activity trackers while riding a motorcycle over a

• Our results noted that each of the studied activity trackers miscounted steps. Only the Apple Watch had one trial where the true step count was exactly matched.

Because each device has a proprietary algorithm for assessing step counts, we can only speculate as to why each device performed as it did during the motorcycling

• Previous research has noted that newer algorithms and additional sensors, such as optical heart rate (photoplethysmography) may increase step accuracy [9,10]. This may be why the Fitbit Zip did poorly compared

• In this study, commercially-available activity trackers were shown to misclassify riding a motorcycle as step activity.

Researchers should be cautious when utilizing consumergrade activity tracker step counts in avid motorcyclists.

For the consumer, the total miscounted steps are relatively small when riding over a moderate distance, and the small metabolic cost of choosing to ride a motorcycle verses drive a vehicle, may overcome these

Activity-Tracking Devices in Controlled and Free-Walking Conditions. American Journal of Health