A time series autoencoder for load identification via dimensionality reduction of sensor recordings

Luca Rosafalco¹, Alberto Corigliano¹, Andrea Manzoni², Stefano Mariani¹

¹Dipartimento di Ingegneria Civile ed Ambientale
²MOX, Dipartimento di Matematica
1. Introduction
2. Case Study
3. Time Series Autoencoder
4. Numerical Results
5. Conclusions
The dimension of data acquired by sensor systems in civil engineering makes extremely difficult their use in raw forms.
Sensor data are usually shaped as **Multivariate Time Series** (MTS).

To manage sensor data, **synthetic features**, like peak spectral frequencies, are extracted.
AutoEncoders (AE) are special types of Neural Networks (NN) able to obtain a reduced data representation.

Advantages related to the use of AE for sensor data dimensionality reduction:

• **no feature engineering** is necessary;
• the obtained data representation can be used for **different tasks**;
• they provide the reduced representation that **best allows to reconstruct data a posteriori**.

From the reduced representation, it is possible to accomplish **regression tasks**. In this work, we tackle the issue of **load identification** in civil structures.
for any i we sample α^i and ϕ^i from

\begin{align*}
\mathcal{U} (0.075, 1.025) \text{ kN/m} \\
\mathcal{U} (25, 325) \text{ Hz}
\end{align*}

where \mathcal{U} indicates a uniform continuous probability density function.

\[h^i_m = 0.5 m \alpha^i \sin \left(2\pi \phi^i t \right) \]

Two-floors shear building model (undamped).

\[V^i = \begin{bmatrix} v_1^i, v_2^i \end{bmatrix} \]

where v_m^i collects the displacement recordings of the m-th floor of the i-th MTS.

\[T = 5 \text{ s} \]
\[\Delta t = 0.02 \text{ s} \]
\[L = 250 \]

*from now on we omit the superscript

is it possible to identify the loading conditions by operating the regression of η^i on V^i؟
Time Series Autoencoder (1D convolutional layers)

\[N^{\text{out}} \]

(number of channels in output to the convolutional layer)

\[N \]

(number of channels in input to the convolutional layer)

discrete convolution operation

\[u_n (V, \Omega_n) = \sum_{b=1}^{N} \omega_n^b \ast v_b, \quad n = 1, \ldots, N^{\text{out}} \]
A Time Series Autoencoder (dimensionality reduction)

\[
V = [v_1, \ldots, v_N] \in \mathbb{R}^{L \times N} \xrightarrow{enc} z \in \mathbb{R}^P \xrightarrow{dec} U = [u_1, \ldots, u_N] \in \mathbb{R}^{L \times N}
\]

where in general \(P \ll (L \cdot M) = 250 \cdot 2 = 500 \)

encoder

stack of convolutional layers + inception modules [1]

decoder

dilated convolutions [2]

\[u_r \in \mathbb{R}^Q \]

minimise \(c_r (\eta, u_r) \)

\[c(V, U) \]

[minimise]

Time Series Autoencoder (inverse problem solution)

\[V = [v_1, \ldots, v_N] \in \mathbb{R}^{L \times N} \]

\[\text{enc} \rightarrow \quad z \in \mathbb{R}^p \]

\[\text{dec} \rightarrow \quad U = [u_1, \ldots, u_N] \in \mathbb{R}^{L \times N} \]

Reduced representation (latent variables)

Minimise \(c(V, U) \)

Regression tool

\[u_r \in \mathbb{R}^Q \]

Minimise \(c_r(\eta, u_r) \)
Numerical results: signal reconstruction

Reconstructed signal

\[\times 10^{-5} \times 10^{-6} \]

\[v_2, u_2 [m] \]

\[t [s] \]

(a) \(\alpha^i = 702 \, \text{N}, \phi^i = 3.56 \, \text{Hz} \)

(b) \(\alpha^i = 4341 \, \text{N}, \phi^i = 9.45 \, \text{Hz} \)

**AE signal reconstruction when \(\phi^i \) is close to the structural frequencies \(f_{str} = [3.93, 10.3] \, \text{Hz} \)
reconstruction error computed for 512 \(\mathbf{v}^i \) unseen during the training of the AE according to the standardised \(L^2 \) error norm.

\[\left\| \mathbf{u}_2 - \mathbf{v}_2 \right\|_2 / \sigma(\mathbf{v}_2) \]

highest error for \(\phi^i \) close to the structural frequencies.
reconstruction error computed for 512 \mathbf{v}^i unseen during the training of the AE according to the standardised L^∞ error norm.

highest error for ϕ^i close to the second structural frequency.
Numerical results: regression outcomes

Results obtained for $P = 4$.

Load identification is satisfactorily accomplished through the regression of α^i and ϕ^i on z.
Thank you for your attention!

Essential Bibliography:

