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Abstract: Dealing with complex engineering problems characterized by Big Data, particularly in the 
structural engineering area, has recently received considerable attention due to its high societal 
importance. Data-driven structural health monitoring (SHM) methods aim at assessing the 
structural state and detecting any adverse change caused by damage, so as to guarantee structural 
safety and serviceability. These methods rely on statistical pattern recognition, which provides 
opportunities to implement a long-term SHM strategy by processing measured vibration data. 
However, the successful implementation of the data-driven SHM strategies when Big Data are to be 
processed, is still a challenging issue since the procedures of feature extraction and/or feature 
classification may result time-consuming and complex. To enhance the current damage detection 
procedures, in this work we propose an unsupervised learning method based on time series analysis, 
deep learning and Mahalanobis distance metric for feature extraction, dimensionality reduction and 
classification. The main novelty of this strategy is the simultaneous dealing with the significant issue 
of Big Data analytics for damage detection, and distinguishing damage states from the undamaged 
one in an unsupervised learning manner. Large-scale datasets relevant to a cable-stayed bridge have 
been handled to validate the effectiveness of the proposed data-driven approach. Results have 
shown that the approach is highly successful in detecting early damage, even when Big Data are to 
be processed. 
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1. Introduction 

Structural health monitoring (SHM) is a necessity for the today society, to preserve valuable and 
important civil structures and guarantee their health and integrity in order to avoid human and 
economic losses [1, 2]. Due to recent advances in sensing and data acquisition systems, the processing 
of raw measured data by the SHM system is not a major challenge. On this basis, data-driven methods 
have been increasingly received attention among civil engineers and researchers for monitoring civil 
structures [3].  

The central core of all these methods relies upon statistical pattern recognition and consists of 
feature extraction and feature classification. The former step is a signal processing strategy, aiming 
at extracting meaningful information (called here damage-sensitive features) from raw measured 
data (e.g. acceleration time histories), while the latter one is a machine learning algorithm for 
analyzing and classifying the extracted features for early damage detection, localization and 
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quantification [4-7]. Time series modeling is one of the powerful feature extraction methods, that is 
intended to fit a parametric representation (model) to raw measured data [8, 9]. Coefficient-based 
and residual-based algorithms are two different feature extraction methods via time series modeling. 
Although the outputs (features) of the residual-based algorithm are high-dimensional, the relevant 
methodology proves to be more efficient that the coefficient-based one by avoiding order 
determination and parameter estimation of the measured vibrations related to the current (possibly 
damaged) conditions [4]. Further to that, novelty detection based on unsupervised learning, which is 
to be contrasted supervised learning [10, 11], is an influential method for feature classification. 
Statistical distances [4, 12-14], clustering algorithms [15], and artificial neural networks [16] are 
popular tools for developing novelty detectors for SHM. 

Despite various effective data-driven methods, the presence of large volumes of vibration 
measurements (Big Data) may bring into the procedure time-consuming and cumbersome algorithms 
for decision-making [2]. To deal with this issue, Vitola et al. [17] presented a statistical pattern 
recognition method based on multivariate analysis, sensor data fusion and machine learning for 
damage detection from a large volume of data acquired from distributed piezoelectric sensors. A 
machine learning algorithm featuring cross correlation and robust regression analyses was presented 
by Catbas and Malekzadeh [18] to detect damage and deal with the problem of Big Data collected 
from the mechanical components of movable bridges. Big Data analytics was performed by Kim and 
Queiroz [19] for the condition evaluation of highway bridges by roughly considering one million data 
samples. Yao et al. [20] presented an iterative spatial compressive sensing scheme for damage 
identification and localization by handling the Big Data problem. 

Departing from the previously mentioned cited works, the main objective of this paper is to 
propose an unsupervised learning method for early damage detection via time series analysis for 
feature extraction through an AutoRegressive Moving Average (ARMA) model, a deep autoencoder 
neural network for dimensionality reduction, and the Mahalanobis distance metric for feature 
classification. In this method, the large volumes of the high-dimensional ARMA residuals extracted 
from the vibration responses of a structure featuring either a normal or damaged condition, are fed 
into an autoencoder so as to extract the outputs of the bottleneck layer as the representative, low-
dimensional features. The Mahalanobis distance is then used to measure the dissimilarities between 
the training and test data sets obtained from the low-dimensional features. The effectiveness and 
performance of the proposed method are verified by a large-scale bridge. Obtained results 
demonstrate that the method is successful in detecting early damage, still very efficiently dealing 
with the problem of Big Data. 

2. Methodology 

2.1 Feature extraction by ARMA modeling 

Time series analysis via ARMA modeling has emerged as an effective approach to extract 
damage-sensitive features from structural responses to ambient vibrations [8]. ARMA, as an 
extension of the AR representation, is an output-only time-invariant linear model [21]. Given a 
vibration response y(t) at time t, the model is given by: 

  (1) 

where the first and second terms at the right-hand side respectively refer to the AR (output) and MA 
(error) terms of the whole model. In Equation (1): p and q are the model orders; φ1,…,φp and ψ1,…,ψq 
are the coefficients of the AR and MA terms; e(t) is the residual at time t, which represents the 
difference between the measured and predicted responses. For SHM purposes, the AR coefficients 
and the model residuals are used as damage-sensitive features; more details of the process of feature 
extraction by ARMA modeling can be found in [8]. 
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2.2 Dimensionality reduction by a deep autoencoder 

Deep learning is a relatively new method in the field of machine learning, which exploits the 
enhanced approximation/mimicking capabilities of deep neural networks [16]. If this technique is 
allowed for within an autoencoder, it shows the major feature of working in an unsupervised fashion: 
the neural network thus aims at learning a new representation of data by trying to reconstruct the 
inputs [22]. An autoencoder is comprised of two phases: encoding the input data into a lower-
dimensional space, and decoding of the compressed representation back to the original space. The 
deep autoencoder minimizes the difference between its input and output, via a cost function L that is 
defined in the following form: 

  (2) 

where: X∈ℝm×n denotes the input, i.e. the initial feature samples relevant to the normal structural 
condition as obtained from time series modeling; and 𝐗$∈ℝm×n is the reconstruction of X, which is 
defined as the network output. Besides the input and output layers, a deep autoencoder includes 
several hidden layers. The central hidden layer is called bottleneck, as it has the minimum number of 
neurons among all the hidden layers; this layer plays a crucial role in the problem of dimensionality 
reduction [23]. In this study, a deep autoencoder with seven hidden layers has been designed, to 
extract the outputs of the bottleneck layer as the low-dimensional system features. 

In deep learning, the selection of the numbers of hidden layers and neurons a crux. Having set 
for the deep autoencoder the number of the hidden layers, the optimization of the number of neurons 
of each layer can be carried out by means of the final prediction error (FPE) function [24]. Given the 
neuron numbers of the hidden layers h1-h7, this function is written as follows: 

 
 (3) 

In this equation: β=Nw/N, where N=n×m; Nw=((m+h4+1)∑ ℎ!"
!#$ )+(m+h4), and h4 denotes the number of 

neurons of the bottleneck layer; α=E/2N is an average sum of squared errors, where the sum-squared-
error E is given by: 

   (4) 

By continuously varying the values of h1-h7, that featuring the smallest FPE results to be the most 
appropriate, problem-dependent choice. The input matrix X is thus fed into the deep neural network 
to extract the low-dimensional outputs Bx∈ℝm×f of the bottleneck layer, where f≪n. The same process 
is repeated for the feature matrix Z∈ℝm×n for the current state, in order to extract the corresponding 
low-dimensional outputs Bz∈ℝm×f of the bottleneck layer.  

2.3 Feature classification by Mahalanobis distance metric 

To finally compare the damage-sensitive features relevant to the undamaged state, namely the 
baseline, and to the current state, a distance metric must be introduced. The Mahalanobis distance is 
indeed a statistical tool for computing the dissimilarity between two multivariate datasets, or 
matrices [12]. If the feature matrices X and Z are handled in the distance calculation, the procedure 
may result to be time-consuming and cumbersome, as they are high-dimensional features. If the low-
dimensional matrices Bx and Bz are instead handled, the Mahalanobis distance can turn out to be by 
far more efficient. 

For this purpose, it is necessary to generate the training and test sets Tx and Tz from Bx and Bz, 
in the training and inspection phases [12]. Subsequently, the mean vector (vx) and the covariance 
matrix (Cx) are computed for the training set Tx, so to measure the dissimilarity of each vector (tz) of 
matrix Tz from these components in the following form: 
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3. Performance validation 

The vibration datasets of the Tianjin-Yonghe Bridge [25] have been used to assess the 
performance of the proposed method. This is one of the earliest cable-stayed bridges constructed in 
Mainland China. The bridge consists of a main span of 260 m, and two side spans of 25.15 m and 
99.85 m, see Figure 1. After 19 years of operation from 1987, some cracks and corrosion in some stayed 
cables were discovered. An SHM system was then designed to measure and monitor the bridge 
vibrations after a major rehabilitation program; however, new damage patterns were found in the 
girders during a routine inspection in August 2008. In the meantime, acceleration time histories were 
measured by 14 single-axis accelerometers deployed as shown in Figure 1, during 12 days (January 
1, January 17, February 3, March 19, March 30, April 9, May 5, May 18, May 31, June 7, June 16, and 
July 31, 2008). 

 

 
Figure 1. Sketch of the Tianjin-Yonghe Bridge, with sensor labels and deployment. 

The measured vibration data for each day consisted of 24 sets of one-hour measurements with a 
sampling frequency of 100 Hz, yielding 360,000 acceleration samples at each sensor location. 
Measurements collected by sensor #10 have been considered to provide meaningless information, 
while datasets of May 31, June 7, June 16 have been disregarded due to the resulting weak excitations; 
accordingly, in this study the measurements gathered by 13 accelerometers during the first eight days 
and July 31 have been allowed for. In such cases, it has been only assumed that the bridge was 
undamaged on the first eight days, and damaged on the last [25]. Considering all the acceleration 
responses along the 24 test measurements, the data samples for feature extraction amount to 
1,010,880,000, producing a huge volume of high-dimensional sets (Big Data). In this regard, the 
variable m and n are set to 312 and 360000, where 312=24×13. 

 
Figure 2. Sample neurons of the hidden layers of the proposed deep autoencoder. 

For the process of feature extraction by ARMA modeling, the model orders p and q must be 
defined. The orders have been obtained by using the Bayesian information criterion (BIC) [21]. Next, 
the coefficients of the AR and MA terms have been estimated by minimizing the model residuals. 
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Referring to Section 2, the matrices X∈ℝ312×360000 and Z∈ℝ312×360000 represent the residual sets of the 
bridge in the normal and damaged conditions, respectively. To obtain the low-dimensional feature 
sets, Bx and Bz, Figure 2 provides the optimal sample neurons of the hidden layers 1-7; via the FPE 
function, the most appropriate neurons for each layer have been determined. Figure 3 depicts the 
best sample neuron for the residual matrices, which obviously varies in time even for the normal 
condition only. In the figure, the red circles depict the best number of neurons of the hidden layers; 
for example, the smallest FPE value in Figure 3(a) has been obtained for sample 16, which means that 
the proper numbers for h1-h7 turn out to be 80, 60, 40, 20, 40, 60, and 80, respectively. 

 
Figure 3. Variation of the final prediction error FPE with the sample, to optimize the selection of the 
neuron size of hidden layers of the deep autoencoder on (a) January 1, (b) February 3, (c) March 30, 
(d) May 5. 

 
Figure 4. Early damage detection by exploiting the low-dimensional features: variation in time of 
the Mahalanobis distance. 

Extracting the outputs at the bottleneck layers for all the nine days of the monitoring has 
provided the matrices Bx∈ℝ312×123 and Bz∈ℝ312×123, used to generate the training and test data sets. As 
customarily assumed, 75% of the samples in Bx have been considered to obtain the training matrix 
Tx∈ℝ312×92; the remaining 25% of the samples in Bx and all the samples in Bz have instead provided 
the test matrix Tx∈ℝ312×154. Figure 4 illustrates the result of early damage detection via the Mahalanobis 
distance, where the first 123 samples are related to the normal condition of the bridge and the second 
123 samples belong to the damaged state; the distance values regarding samples 1-92 pertain to the 
normal condition in the training phase. These results have been obtained by handling each of the 
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vectors (tx) of the training matrix in Equation (5), to estimate the threshold value as the horizontal 
dashed line in Figure 4, that is based on the generalized extreme value distribution and block maxima 
technique [10, 12]. The distance quantities relevant to samples 93-123 refer to the same normal 
condition, but used as validation data. 

From Figure 4, it is clear that all distance values related to the normal condition, in both the 
training and inspection phases, fall below the threshold limit. The other way around, all the distance 
values related to samples 124-246 exceed the threshold, implying an accurate detection of damage. 
The great advantage of the proposed method is to make a decision using only the 246 distance values, 
rather than the total 360,000 data points. Therefore, one can conclude that this method not only yields 
accurate damage detection outcomes, but also provides low-dimensional features and outputs for 
decision-making. 

4. Conclusions 

This work has proposed an unsupervised learning method based on three main steps: feature 
extraction by ARMA modeling; dimensionality reduction by a deep autoencoder; and feature 
classification via the Mahalanobis distance metric. The large volumes of vibration measurements 
regarding a large-scale cable-stayed bridge have been used to assess the performance of the proposed 
method. The results have shown that this method is able to accurately detect damage by means of 
the low-dimensional features obtained from the bottleneck layer of a deep autoencoder with seven 
hidden layers. It has been also shown that the neuron size selection via the FPE function is an 
appropriate tool for hyperparameter estimation in deep learning, due to the resulting good results 
obtained in terms of damage detection. 
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