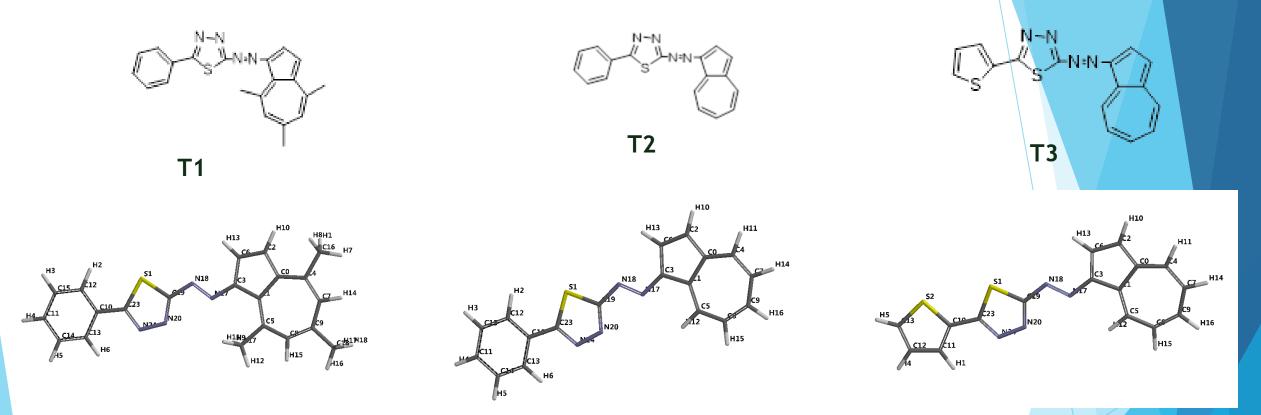


The 24th International Electronic Conference on Synthetic Organic Chemistry 15 Nov - 15 Dec 2020

In silico evaluation of antimicrobial activity of some thiadiazoles using molecular docking approach

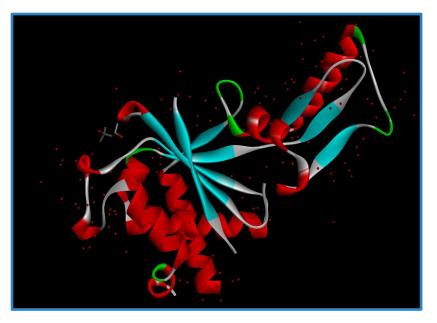

Amalia Stefaniu^{1*}, Lucia Pintilie¹, Veronica Anastasoaie² and Eleonora-Mihaela Ungureanu^{2*}

¹ National Institute for Chemical - Pharmaceutical Research and Development - ICCF, 112 Vitan av. 031299 Bucharest, Romania

² Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, **"Politehnica"** University of Bucharest, Gheorghe Polizu 1-7, 011061, Sector 1, Bucharest, Romania

* <u>Corresponding authors</u>: email address: astefaniu@gmail.com; em_ungureanu20<mark>00@yahoo.com</mark>

Structures of 1,3,4 - thiadiazoles under investigation

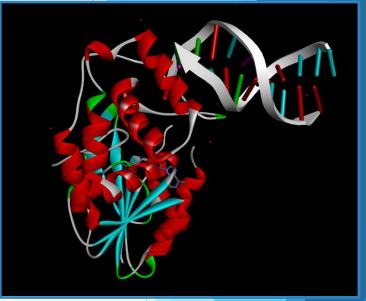


Geometry optimization: energy minimization, MMFF*, with Spartan Software, Wavefunction Inc, Irvine, USA**

* W.J. Hehre, A Guide to Molecular Mechanics and Quantum Chemical Calculations, Wavefunction, Inc., Irvine, CA, 2003


** Y. Shao, L.F. Molnar, Y. Jung, et al., Advances in methods and algorithms in a modern quantum chemistry program package, Phys. Chem. Chem. Phys.2006, 8, 3172-3191

Biological targets from Protein Data Bank



PDB ID : 3M4I [1]

Crystal structure of the second part of the Mycobacterium tuberculosis DNA gyrase reaction core: the TOPRIM domain at 1.95 A resolution

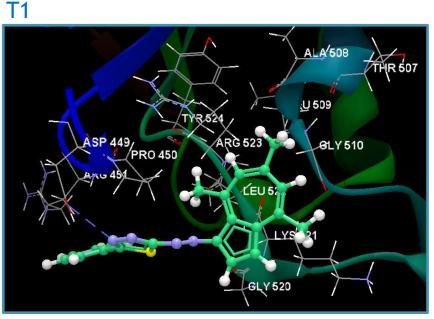
PDB ID : 4P80 [2] S. aureus gyrase bound to an aminobenzimidazole urea inhibitor

PDB ID : 4RTO [3]

Complex of Escherichia coli DNA Adenine Methyltransferase (DAM) with Sinefungin and with DNA Containing Proximal Pap Regulon Sequence

[1] J. Piton, S. Petrella, M.Delarue, G. Andre-Leroux, V. Jarlier, A. Aubry, C. Mayer, Structural insights into the quinolone resistance mechanism of Mycobacterium tuberculosis DNA gyrase, PLoS One 2010 5, e12245-e12245.

[2] A.L. Grillot, A. Le Tiran, D.Shannon, E. Krueger, et al. Second-Generation Antibacterial Benzimidazole Ureas: Discovery of a Preclinical Candidate with Reduced Metabolic Liability, J. Med. Chem. 2014, 57, 21, 8792-8816.

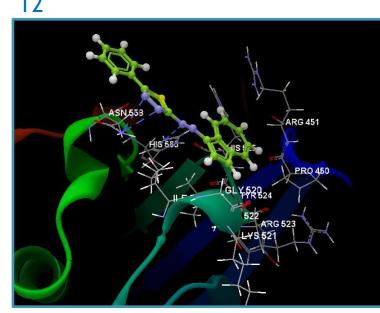

[3] J.R. Horton, X. Zhang, R.M. Blumenthal, X.Cheng, Structures of Escherichia coli DNA adenine methyltransferase (Dam) in complex with a non-GATC sequence: potential implications for methylation-independent transcriptional repression, Nucleic Acids Research 2015, 43(8), 4296-4308.

Docking validation of co-crystallized ligands

	Interacting group	Ligand interactions (Å)	Score/ RMSD	
3M4I	ARG451, HIS525, PRO450, TYR524, HIS560, GLY520, ILE519, LEU522, ARG523 D): (4S)-2-methyl-2,4-pentanediol	O4(sp ³) - O (sp ²) LEU522:3.302	25.91 0.86	
4P80 Image: state s	ASN54, VAL52, ILE51, ILE102, VAL79, ILE175 VAL174, THR80, THR173, PR087, GLY85 ASP81, ARG144, ARG84, GLY83, GLU58 SER55, ILE86 3): 1-ethyl-3-[5-(5-fluoropyridin-3-yl)-7-(pyrimidin-2	 N6(sp²) - O(sp²) ASP81: 2.797 N3(sp²) - O(sp²) ASP81: 2.914 N3(sp²) - O(sp³) SER55: 3.081 	9 70.22 0.08	
<image/>	ASN56, ILE55, PHE201, GLU163, SER164, GLN205, TYR165, SER168, LEU59, ASP54, PRO183, PHE35, ALA53, PRO182, PRO34, ASP181, GLU33, TYR179, VAL36, TYR184, VAL41, LYS14, SER40, GLY39, GLY13, GLY12, GLY37, ALA38, ALA11, TRP10	$O(sp^{2}) - O(sp^{2}) ASP54: 2.65$ $O(sp^{3}) - O(sp^{3}) ASP54: 2.56$ $O(sp^{3}) - N(sp^{2}) TRP10: 3.12$ $O(sp^{2}) - N(sp^{2}) ALA38: 2.834$ $O(sp^{2}) - O(sp^{3}) SER40: 2.98$ $N(sp^{3}) - O(sp^{3}) ASP181: 2.426$	67.74 7 67.74 8 0.79	

Ligand (SFG): (2S,5S)-6-[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-3,4-dihydroxy-oxolan-2-yl]-2,5-bis(azanyl)hexanoic acid

Docking results for 1,3,4 - thiadiazoles against 3M4I (Mycobacterium tuberculosis DNA gyrase)

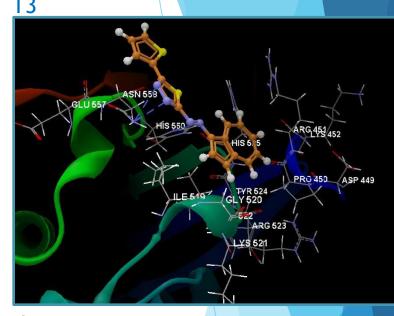

Interacting group

ASP449, ARG451, PRO450, TYR524, ARG523, LEU522, LYS521, GLY520, ALA508, LEU509, GLY510, THR507

Hydrogen bond:

N24(sp²) - O (sp³) ASP449: 3.247 Å

Score: 38.19, RMSD: 0.06

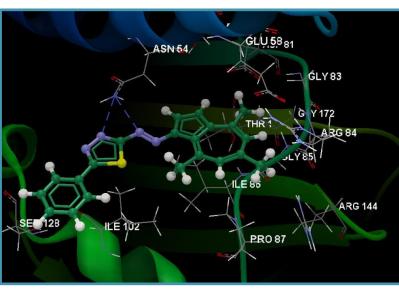


Interacting group ASN558, HIS560, ILE519, HIS525, ARG451, PRO450, GLY520, TYR524, LEU522, ARG523, LYS521

Hydrogen bonds:

N18(sp²) - N(sp²) HIS560: 3.057 Å N20(sp²) - N(sp²) ASN558: 3.126 Å N24(sp²) - N (sp²) ASN558: 3.103 Å

Score:43.19, RMSD: 0.69

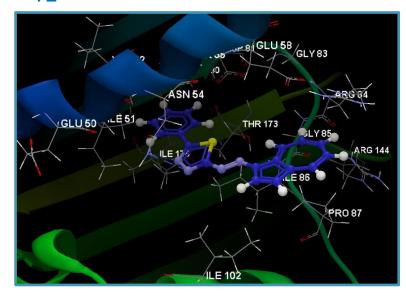


Interacting group GLU557, ASN558, HIS560, ILE519, HIS525, ARG451, LYS452, ASP449, PRO450, TYR524, GLY520, LEU522, ARG523, LYS521

Hydrogen bonds:

N17(sp²) - N (sp²) HIS560: 3.187 Å N20 (sp²) - N(sp²) ASN558: 2.914 Å N24 (sp²) - N (sp²) ASN558: 3.135 Å Score: 40.95, RMSD: 0.72

Docking results for 1,3,4 - thiadiazoles against 4P80 (Staphyloccocus aureus gyrase)

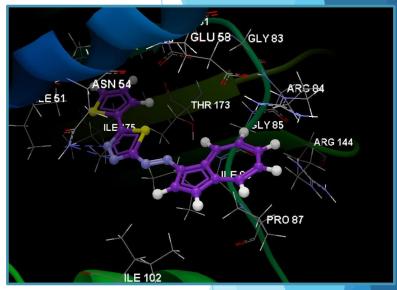

Interacting group

SER55, ASN54, GLU58, ASP81, GLY83, GLY172, ARG84, GLY85, ILE86, PRO87, ARG144, ILE102, SER128, THR173

Hydrogen bond:

N20(sp²) - N(sp²) ASN54: 3.062 Å N18(sp²) - N(sp²) ASN54: 3.135 Å

Score: 58.08, RMSD: 0.10


Interacting group

VAL52, VAL79, ASN54, ILE51, GLU50, SER55, THR80, ASP81, GLU88, GLY83, ARG84, THR173, VAL174, ILE175, GLY85, ARG144, ILE86, PRO87, ILE102

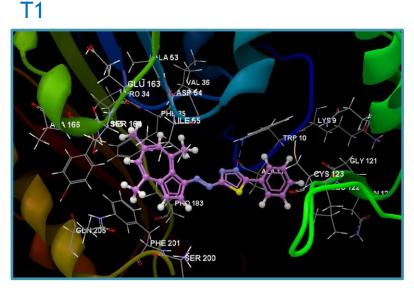
Hydrogen bonds:

N24(sp²) - N(sp²) ASN54: 2.790 Å N20(sp²) - N(sp²) ASN54: 2.944 Å

Score: 56.49, RMSD: 0.18

Interacting group

13


ASP81, GLU58, GLY83, THR80, SER55, VAL79, ASN54, ILE51, ILE175, VAL174, THR173, ARG84, GLY85, ARG144, ILE86, PRO87, ILE102

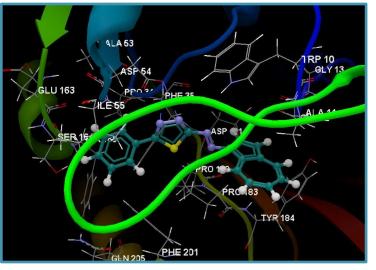
Hydrogen bonds:

N24(sp²) - N(sp2) ASN54: 2.954 Å N20(sp²) - N(sp2) ASN54: 2.903 Å

Score: 53.61, RMSD: 0.19

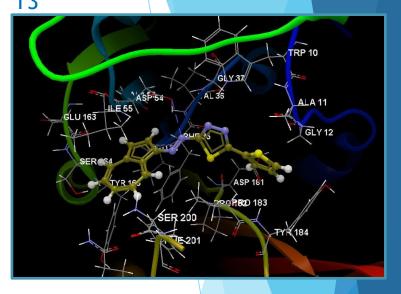
Docking results for 1,3,4 - thiadiazoles against 4RTO (Escherichia coli DNA Adenine Methyltransferase)

Interacting group


ALA53, VAL36, GLU163, PRO34, ASP54, PHE35, ILE55, SER164, TYR165, ALA166, GLN205, PHE201, SER200, PRO183, ASN120, LEU122, CYS123, ALA11, TRP10, LYS59, ASN115, GLY121

Hydrogen bond:

N24(sp²) - N(sp²) TRP10: 3.101 Å

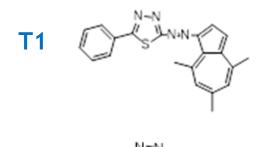

Score: 72.21, RMSD: 0.07

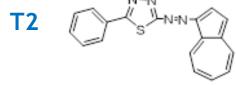
T2

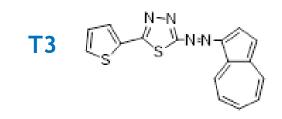
Interacting group

ALA53, ASP54, GLU163, PRO34, PHE35, ILE55, SER164, TYR165, GLN205, PHE201, TYR184, PRO183, PRO182, ASP181, ALA11, GLY12, TRP10, GLY13 Hydrogen bonds: N24(sp²) - O(sp³) ASP54: 3.000 Å N20(sp²) - O(sp³) ASP54: 2.982 Å Score: 71.15, RMSD: 0.07

Interacting group


TRP10, ALA11, GLY12, GLY37, VAL36, ASP54, ALA53, ILE55, GLU163, SER164, PHE35, PRO34, TYR165, ASP181, PRO183, PRO182, SER200, TYR184, PHE201, GLN205


Hydrogen bond:

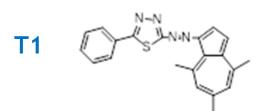

N18(sp²) - O(sp³) ASP54: 3.304 Å

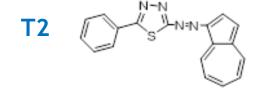
Score: 66.42, RMSD: 0.23

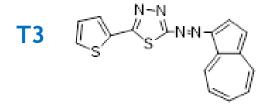
Assessment of oral bioavailability according Lipinski's rule of Five

Lipinski's rule of five [4]: MW < 500 Da LogP < 5 HBD < 5 HBA < 10

Ligand/ protein/ strain	MW (g/mol)	HBD	HBA	LogP	Flexible	Lipinski's
					bonds	violations
co-crystalized MPDA /	118.17	2	2	0.27	2	0
3M4I (M. tuberculosis)						
co-crystalized	376.37	2	8	1.61	4	0
883 / 4P8O (S.aureus)						
co-crystalized	382.39	10	12	-3.22	7	2
SFG / 4RTO (E. coli)						
M316 (T1)	358.46	0	4	5.24	3	1
M358 (T2)	326.46	0	4	5.49	3	1
L2548 (T3)	322.41	0	4	5.21	3	1


MW - molecular weight ; HBD - Hydrogen bond donor count; HBA - Hydrogen bond acceptor count; logP - water-octanol partition coefficient

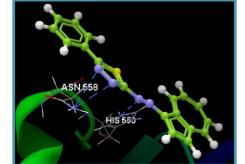

Conclusion:

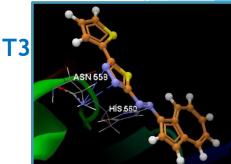

Log P parameter is larger than 5 for all investigated 1,3,4 - thiadiazoles, these structures being highly lipophilic, with poor aqueous solubility. Values of LogP over 5 suggest poor absorption or permeation. Further optimization of such ligands containing together azulene and thiadiazole moieties, is required in order to increase the hydrophilicity and to favor hydrophilic interactions by means of NH/OH/N/O groups. Thus the propensity/probability to interact with proteins and the ability to become biologically active, can be successfully achieved.

[4] C.A. Lipinski, Lead-and drug-like compounds: the rule-of-five revolution, Drug Discovery Today: Technologies 2004, 1(4), 337-341.

Conclusions and perspectives

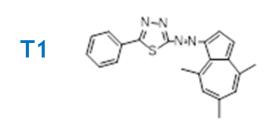


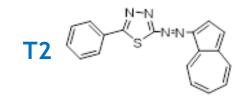

Docking conclusions:

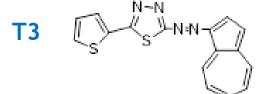

a) 3M4I (Mycobacterium tuberculosis DNA gyrase)

- All 1,3,4-thiadiazoles exhibit greater docking score than the natural ligand.
- T2 and T3 reveals similar scores, by forming 3 hydrogen bonds with the same amino acids residues, with N (sp²) HIS560 and N (sp²) ASN558, respectively, at the two nitrogen atoms of the thiadiazole aromatic ring, that is known as structural motif common in pharmacology [5] and one interaction by the diazo bond that link the thiadiazole with the azulene.
- The planar five-member thiadiazole ring acts as an acceptor in the H-bond formation, in the biological media. Some of thiadiazole based structures posses antimicrobial activities, e.g. oxazolidinone analogues possessing 1,3,4 - thiadiazole C-ring, designed

as hybrids of linezolid [6, 7].

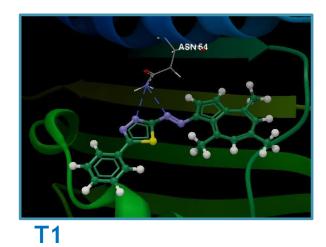


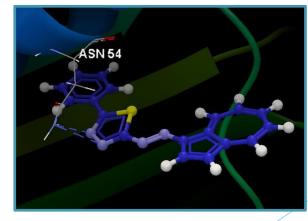


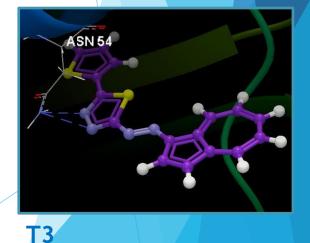

[5] Y. Hu, C.Y. Li, X.M. Wang, Y.H. Yang, H.L. Zhu, 1,3,4-Thiadiazole: Synthesis, Reactions, and Applications in Medicinal, Agricultural, and Materials Chemistry, Chem. Rev. 2014, 114, 5572–5610.

[6] J. Matysiak, Biological and Pharmacological Activities of 1,3,4-Thiadiazole Based Compounds, Mini Reviews in Med. Chem. 15(9), 2012, 762-775.
 [7] .M. Thomasco, R.C.Gadwood, E.A. Weaver, J.M. Ochoada, C.W. Ford, G.E. Zurenko, J.C. Hamel, D. Stapert, J.K. Moerman, R.D. Schaadt, B.H. Yagi, The synthesis and antibacterial activity of 1,3,4-thiadiazole phenyl oxazolidinone analogues, Bioorg. Med. Chem. Lett., 2003, 13, 4196-4196.

Conclusions and perspectives

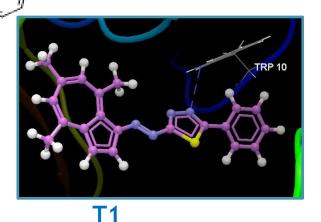


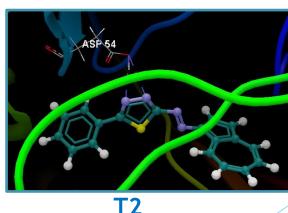



Docking conclusions:

b). 4P8O (S. aureus gyrase)

- > All 1,3,4-thiadiazoles exhibit lower docking score than the natural ligand.
- ASN54 amino acid residue is involved by it's Nsp² in two H-bond forming with T1-T3 ligands. Although present in the interacting surrounding group of cocrystalized ligand and thiadizoles ligands, ASN54 don't interact by hydrogen bonding with the natural ligand. This compound reveals more interactions (4 H bonding and greater docking score). So, lower, maybe inefficient activity of investigated thiadiazoles against S. aureus gyrase is expected.





T2

Conclusions and perspectives

- > Docking conclusions:
- c). 4RTO (*Escherichia coli* DNA Adenine Methyltransferase)
- Concerning T1 and T2, the thiadiazole ring is involved in H bonding with different amino acid residues (TRP10 and ASP54, respectively).T3 acts differently, by a nitrogen of the azo bond, that forms Hydrogen bond with ASP54.
- T1 and T2 reveals greater docking scores than the natural ligand. The obtained score for T3 is lower. The co-crystallized ligand presents interactions within the active binding site, whiles our investigated thiadiazoles are poorly interacting.
- Further analyses are required in order to establish certainly a possible inhibitory action against *E. coli* and other hybrid optimized structures containing thiadiazole and azulene scaffolds are considered.

