

A first attempt to identify repurposable drugs for type 2 diabetes: 3D-similarity search and molecular docking

Daniela Istrate,* Alina Bora, Luminita Crisan

"Coriolan Dragulescu" Institute of Chemistry Timisoara, 24 Mihai Viteazul Av., 300223 Timișoara, Romania; e-mails: dana.istrate04@amail.com

ABSTRACT

Drug repositioning involves the investigation of existing drugs for new therapeutic purposes such as type 2 diabetes. This disease affects the health and quality of life for individuals around the world.

- Sitagliptin, a highly selective dipeptidyl peptidase-4 (DPP-4) inhibitor, is used to treat type 2 diabetes mellitus by effective fasting and improved glycemic control. Despite this advantage, serious hypersensitivity reactions have been acknowledged for patients receiving sitagliptin.
- In this context, new drugs with enhanced profile and targeting DPP-4 are necessary to be developed. Sitagliptin, ((2R)-4-oxo-4-[3-(trifluoromethyl)-5,6-dihidro[1,2,4]triazolo[4,3-A] pirazin-7(8H)-yl]-1-(2,4,5trifluorophenyl)butan-2-amine), was used as a query in a 3D similarity search on the approved DrugBank.
- Based on the TanimotoCombo parameter, the first 10 approved DrugBank drugs were docked in the 4FFW active site to identify effective anti-diabetic effects for possible repurposable drugs marketed with other indications.

METHODS

- 2454 approved DrugBank <u>https://go.drugbank.com/</u>
- Ionization states and tautomers
 <u>https://www.schrodinger.com/ligprep</u>
- Conformational space <u>https://www.eyesopen.com/omega</u>
- 3D-similarity search https://www.eyesopen.com/rocs
- Molecular docking
 - https://www.eyesopen.com/oedocking

RESULTS and DISCUSSIONS 3D —similarity search: ROCS- Rapid Overlay of Chemical Structures

3D similarity coefficients based on shape, color and a combination between these two are listed in Table 1

Table 1. The top ten approved drugs prioritized against Sitagliptin ordered by TanimotoCombo

Name	Tanimoto Combo	Shape Tanimoto	Color Tanimoto	FitTversky Combo	Fit Tversky	FitColor Tversky	RefTversky Combo	Ref Tversky	RefColor Tversky	Scaled Color	Combo Score	Color Score	Overlap
DB09089	1.203	0.69	0.513	0.8	0.716	1.516	0.834	0.644	1.479	0.721	1.411	-5.765	1,034.86
DB00298	1.098	0.77	0.328	0.806	0.466	1.272	0.945	0.526	1.47	0.463	1.233	-3.705	1,036.78
DB09195	1.068	0.765	0.303	0.88	0.466	1.346	0.854	0.466	1.319	0.466	1.231	-3.725	1,143.70
DB01333	1.02	0.707	0.312	0.759	0.555	1.314	0.912	0.417	1.329	0.565	1.273	-4.523	975.524
DB00447	1.017	0.704	0.313	0.763	0.556	1.318	0.902	0.417	1.319	0.566	1.27	-4.528	980.782
DB00567	1.008	0.67	0.339	0.738	0.59	1.327	0.879	0.443	1.321	0.601	1.27	-4.805	948.703
DB13858	1.004	0.45	0.554	0.524	0.632	1.156	0.762	0.819	1.58	0.624	1.074	-4.993	667.898
DB00833	1	0.677	0.322	0.741	0.568	1.31	0.887	0.427	1.314	0.579	1.257	-4.633	952.603
DB01150	1	0.748	0.252	0.828	0.533	1.361	0.886	0.323	1.209	0.553	1.301	-4.427	1,069.74
DB01060	0.995	0.718	0.277	0.782	0.597	1.379	0.899	0.34	1.239	0.623	1.342	-4.988	1,006.84

Molecular docking: FRED - Fast Rigid Exhaustive Docking

✓ The performance of the docking experiment was checked by redocking co-crystallized ligand, sitagliptin, into active sites of DPP4 (4FFW)

fppt.com

TRP A:660

TYR A:632

VAL A:657

HIS A:741

ASN A:71

SER A:631

ARG A:123

TYR A:663

BBB - blood-brain barrier permeation HIA - passive gastrointestinal absorption

CONCLUSIONS

- The ten approved drugs prioritized by TanimotoCombo coefficient (Table 1) were docked in the active site of DPP4 (4FFW).
- The SwissADME parameters, passive gastrointestinal absorption (HIA) and brain permeability (BBB), indicated approved drugs to passively permeate the BBB (yellow region – DB09195, DB09089, DB00298, DB13858) and not to be effluated from the CNS (red dot - DB13858).
- In the current work, drug reposition strategy was used to explore the efficacy of already approved drugs that could potentially be repurposed for treating type 2 diabetes.

Acknowledgments

- The authors thank ChemAxon Ltd. (Marvin Sketch and Instant JChem), OpenEye Ltd., and BIOVIA software Inc. (Discovery Studio Visualizer) for providing academic license.
- The authors wish to thank Schrödinger Inc for providing an academic trial license to complete the calculations for this paper.
- Project No. 1.2 of the "Coriolan Dragulescu" Institute of Chemistry, Romanian Academy, Timisoara, financially supported the current work.

 The 24th International Electronic Conference on Synthetic Organic Chemistry 15.11.2020 – 15.12.2020

