

LONG-TERM CHANGES IN SOLAR SHORTWAVE IRRADIANCE DUE TO DIFFERENT SOURCES ACCORDING TO MEASUREMENTS AND RECONSTRUCTION MODEL IN NORTHERN EURASIA

Elena Volpert, Natalia Chubarova

lena.volpert@gmail.com; natalia.chubarova@gmail.com

Lomonosov Moscow State University, Geographical Faculty, I Leninskie Gory, 119991 Moscow, Russia

The work was supported by RFBR grant number 18-05-00700

ECAS 2020

GOALS

- Development of method for the reconstruction the long-term variability of solar shortwave irradiance (SR)
- Detailed testing the method against long-term measurements of Moscow State University Meteorological Observatory (MO MSU) since 1968
- Evaluation of the rate of different geophysical factors influence on SR variations
- Reconstruction and analysis of SR variability for Northern Eurasia

MODEL RECONSTRUCTION OF SOLAR SHORTWAVE IRRADIANCE

1Z –	$\sum_{j} (W_j(h) (v_aer_{i,j}(\tau_a)))$	$(W_j(h) (v_aer_{i,j}(\tau_a, P_{cf}, A) + v_cq_{i,j}(CQ_A) + v_tcld_{i,j}(\tau_c, P_{ov})))$				
v _i –			$\sum_{j} W_{j}(h)$		<i>h</i>)	
v_aer	SR variability due to aerosol	erosol		SR v	ariability due to cloud amount	
$ au_a$	AOT (aerosol optical thickness)		CQ_A	Q_A Effective cloud amount transmission		
P _{cf}	Occurrences of clear sky conditions			with account of the surface albedo influence [<i>A</i>]		
Α	Surface albedo		v_tcld		SR variability due to cloud opt thickness	ical
	W(h) – weights function h – solar angle i – year index j – month index		τ _c P _{ov}		Cloud optical thickness	
					Occurrences of overcast cloud conditions	

based on (Chubarova, 2008)

Effective
cloud amount
transmission
$$CQ_A = \frac{CQ_{A=0}}{(1 - A(C - D CQ_{A=0}))}$$

 $CQ_{A=0} = \sum_{Nl=0}^{10} \{ [P(Nl) - P(Nl, N_{10})] \times CQ_{A=0}(Nl) + P(Nl, N_{10}) \times CQ_{A=0}(Nl) \times CQ_{up} \}$

$CQ_{A=0}$	Cloud amount transmission without influence of surface albedo		
$CQ_{A=0}(Nl)$	SR transmission by low layer cloudiness		
P (<i>Nl</i>)	Frequency of low layer cloud amount (Nl) with different amounts of total cloudiness		
$P(Nl, N_{10})$	Frequency when total cloud amount is equal N=10 (overcast conditions) with different amount of low layer clouds		
CQ _{up}	Mean SR transmission by overcast upper layer cloudiness (CQup = 0.923)		

According to the model simulations: **C** = 0.1 **D** = 0.7

SR TRANSMISSION ON LOW LAYER CLOUD AMOUNT

SR SENSIBILITY TO INTERANNUAL AEROSOL OPTICAL THICKNESS VARIATIONS

$$v_a er_{i,j} = P_{cf_{i,j}} \left[\left(\frac{\tau_{a_{i,j}}}{\tau_{a,mean_i}} \right)^{a \sin h^2 - b \sin h - c} - 1 \right]$$

v_aer	SR variations due to variations in AOT			
i	year index			
j	month index			
h	solar angle			
$ au_a$	AOT at 550 nm			
P _{cf}	occurrences of clear sky conditions			
$ au_{a,mean}$	mean AOT at 550 nm in the month, weighted on the full period			
а, b, c	empirical coefficients according to the model simulations			

SR SENSIBILITY TO INTERANNUAL CLOUD OPTICAL THICKNESS VARIATIONS IN OVERCAST CONDITIONS

$$v_{tcld_{i,j}} = P_{ov_{i,j}} \left(\frac{CQ_{ov,mean_j} - CQ_{ov,i,j}}{CQ_{ov,mean_j}} \right)$$

v_tcld	SR variations due to variations in cloud optical thickness
i	year index
j	month index
CQ _{ov}	cloud transmission in overcast condition
Ρου	occurrences of overcast cloud conditions
CQ _{ov,mean}	mean cloud transmission in overcast condition in the month, weighted on the full period

TESTING THE RECONSTRUCTION MODEL

<u>Testing</u> parameters:

Period: 1968-2016 yrs.

Time of year: May-September

Data:

I-hour ground-based SR measurements in MO MSU since 1968

Yanishevsky's pyranometer and actinometer

<u>Cloudiness</u>:

I-hour cloud observations in MO MSU

<u>Aerosol:</u>

- <u>until 2002</u> AOT at 550 nm was calculated using direct shortwave irradiance and water vapor content (Tarasova and Yarkho, 1991) from MO MSU's data base
- <u>since 2002</u> AOT measurements in MO MSU by photometer CIMEL CE 318-2

THE CONTRIBUTION OF VARIOUS FACTORS IN SR VARIATIONS

5% due to CLOUD OPTICAL 4% THICKNESS	SR variations due to AOT	1979-2016	+0.4% ± 0.1% per decade
3% 2% 1% 0% -1% -2%	due to cloud optical thickness	1979-2016	-0.3% ± 0.2% per decade (not significant trend)
-3% - -4% -	due to	1968-1978	-10.8% ± 0.8% per decade
-5% └ 1968 1974 1980 1986 1992 1998 2004 2010 2016	transmission	1979-2016	+2.4% ± 0.9% per decade

RELATIVE CHANGES IN SHORTWAVE RADIATION DUE TO THE MEASUREMENTS AND RECONSTRUCTION MODEL IN MOSCOW

RECONSTRUCTION OF SR VARIABILITY IN NORTHERN EURASIA

WARM PERIOD (MAY-SEPTEMBER)

INPUT DATA

CLOUDINESS OBSERVATION

		Russia	Other stations	AEROSOL	<u>IEASUREMENIS</u>
			ISD (Integrated Surface Hourly	Instrument	MODIS
Dat	Data Archive	RIHMI-WDC	Data Base) by NOAA NCEI (National Centers for	Product	Deep Blue + Dark Target AOT at 550 nm
	Web Site http://meta		Environmental Information)	Bias (land)	Deep Blue - [± (0.03 + 20%)] Dark Target - [± (0.05 + 15%)]
			<u>a.gov/isd</u>	Satellite	Terra + Aqua
	Time Resolution	3 hour	3 hour	Period	from 2000 to 2003 – Terra since 2003 – Aqua
SURFACE ALBEDO			ALBEDO	Time Resolution	Monthly average
	Data Archive E		ERA-Interim (Monthly means)	Spatial Resolution	١٥
	Period		1979-2017		http://disc.sci.gsfc.nasa.gov/
	Time Res	olution	Monthly average	Web Site	<u>giovanni/</u>
	Spatial Resolution		0.5°		

STATIONS SELECTION FOR SR VARIABILITY RETRIEVAL

<u>REQUIREMENTS</u>

FOR GROUND-BASED MEASUREMENTS:

- Long-term ground-based SR measurements until 2017 (not less 30 years)
- No data break for more than 2-3 years

FOR INPUT PARAMETERS:

 Availability of cloud observations corresponding to the period of shortwave radiation measurements

<u>SELECTED</u>

GROUND-BASED MEASUREMENTS

Long-term ground-based SR measurements:

WRDC

[World Radiation Data Centre] (Wild et al., 2005)

GEBA

[Global Energy Balance Archive] (Wild et al., 2017)

PERIODS TO ANALYZE LONG-TERM CHANGES IN SR DUE TO DIFFERENT FACTORS IN NORTHERN EURASIA UNTIL 2017

Periods	Reason		
until 1979 yr.	global dimming		
1979-1999 yrs.	global brightening		
2000-2017 yrs.	 Changing in SR trends after 2000 (Wild, 2012) Aerosol database since 2000 		

POSITIVE AND NEGATIVE SR TRENDS DUE TO EFFECTIVE CLOUD AMOUNT TRANSMISSION (CQ) AND AEROSOL OPTICAL THICKNESS (AOT) IN NORTHERN EURASIA

Statistically significant trends were indicated by TRIANGLE icons

ASSESSMENT OF THE CONTRIBUTION OF CLOUDINESS AND AEROSOL IN SR VARIATIONS

Site	Country	lat	lon	$R(CQ_A \& SR)$	R (CQ _A + AOT & SR)
Valentia obs.	IE	51.93	-10.25	0.88	0.89
Belmullet	IE	54.23	-10	0.68	0.69
Malin	IE	55.37	-7.33	0.53	0.52
Dublin	IE	53.43	-6.25	0.72	0.73
Camborne	GB	50.22	-5.32	0.96	0.97
Eskdalemuir	GB	55.32	-3.2	o.86	0.86
Vienna	AT	48.25	16.37	0.94	0.94
Budapest	HU	47.43	19.18	0.99	0.99
Jokioinen	FI	60.82	23.5	0.81	0.75
Helsinki	FI	60.32	24.97	0.86	0.90
Sodankyla	FI	67.37	26.65	0.87	0.88
Toravere	EE	58.45	26.78	0.89	0.90
Moscow	RU	55.7	37.5	0.90	0.92
Ekaterinburg	RU	56.8	60.63	0.89	0.89
Omsk	RU	54.93	73.4	0.93	0.95
Ulaangom	MN	49.85	92.07	0.97	0.98
Chita	RU	52.02	113.33	0.70	0.67
Hakodate	JP	41.82	140.75	0.69	0.68
Aomori	JP	40.82	140.77	0.93	0.95
Sapporo	JP	43.05	141.33	0.96	0.96
Wakkanai	JP	45.42	141.68	0.77	0.79
Asahikawa	JP	43.75	142.37	0.72	0.73

Correlation coefficient between SR variations obtained from measurement data (GEBA and WRDC) and from the reconstruction model due to effective cloud amount transmission

ASSESSMENT OF THE CONTRIBUTION OF CLOUDINESS AND AEROSOL IN SR VARIATIONS

Variations:

- > due to effective cloud amount transmission declare 81% of variations SR
- \succ due to **AOT** declare **19%** of variations SR

Why SR variations due to AOT should be accounted?

RESULTS

- The reconstruction model for shortwave solar irradiance was developed and tested against long-term measurements of Moscow State University Meteorological Observatory (MO MSU) since 1968 with R² equal 0,8. It was detected that cloud amount and aerosol optical thickness have the most significant influence on solar irradiance trends. The analysis of SR trends has detected a significant decline in SR of -10.6% per decade until 1979 yr., which was changed then to significant growth of 2.5% per decade.
- Using the SR model reconstruction the regional characteristics of SR trends due to different sources were obtained for Northern Eurasia.
- For most stations in Northern Eurasia the contribution of the cloud factor prevails, with the exception of the Asian region and the North of Europe, where there is an increase in the aerosol factor.
- On the most sites in European part of the Northern Eurasia an increasing trend in SR since 1979 was indicated explained by decrease in effective cloud transmission. In the last 20 years the trend of increasing cloud transmission has weakened and changed trend sign in the North of Europe and in some Asian regions. At the same time, at most European sites, SR growing due to a decrease in the aerosol optical thickness has been continuing.
- In the future, it is planned to include the cold period in the analysis.

COMMENTS

lena.volpert@gmail.com

natalia.chubarova@gmail.com

SUGGESTIONS