5th International Electronic Conference on Water Sciences (ECWS-5)

Soil-water dynamics in flood irrigated orange orchard in central India: Integrated approach of sap flow measurements and HYDRUS 1D model

Ashutosh Kumar Mishra, Paras R. Pujari, Shalini Dhyani, Parikshit Verma

National Environmental Engineering Research Institute, INDIA

&

Outline

Genesis of the Study

Genesis of the Study

- The N-P CZO is intensively managed watershed
- 60% land utilised for agri-horticulture
- Extensive use of GW for irrigation of orange orchards
- Watershed is under overexploited condition (GW stage development >100 %)

HYDRUS 1D model

- Assessment of water loss due to evaporation and deep drainage in the present scenario
- Understanding pattern of root water uptake
- Sensitivity analysis of the parameters
- Optimization of irrigation schedule

HYDRUS-1D Model Equations

Richards Equation for water flow and root water uptake in variably saturated soil:

$$\frac{\partial \theta}{\partial t} = \frac{\partial}{\partial z} \left[k \left(\frac{\partial h}{\partial z} + 1 \right) \right] - \mathbf{S}(z, t)$$

The sink term can be defined as:

$$\mathbf{S}(\mathbf{h}) = \boldsymbol{\alpha}(\mathbf{h}) \frac{\mathbf{b}'(z)}{\int_0^{\mathbf{L}_{\mathbf{r}}} \mathbf{b}'(z) dz} \mathbf{T}_{\mathbf{p}}$$

Relationship between θ and h, and K and θ

(van Genuchten-Mualem 1980):

$$\boldsymbol{\theta}(\boldsymbol{h}) = \begin{cases} \boldsymbol{\theta}_r + \frac{\boldsymbol{\theta}_s - \boldsymbol{\theta}_r}{[1 + |\boldsymbol{\alpha}\boldsymbol{h}|^n]^m} & \boldsymbol{h} < 0\\ \boldsymbol{\theta}_s & \boldsymbol{h} \ge \mathbf{0} \end{cases}$$

$$K(h) = K_s \left(\frac{\theta - \theta_r}{\theta_s - \theta_r}\right)^l \left\{ 1 - \left\{ 1 - \left(\frac{\theta - \theta_r}{\theta_s - \theta_r}\right)^{\frac{1}{m}} \right\}^m \right\}^m$$

 θ = Volumetric soil-water content [L³L⁻³] *h* = Soil-water pressure head [L] k = Unsaturated soil hydraulic conductivity [LT⁻¹] z = The spatial coordinate (positive upward) [L] **t** = **Time [T]** $S = Sink term [L^3 L^{-3} T^{-1}]$ $\alpha(h)$ = Dimensionless function ($0 \le \alpha \le 1$) L_r = Rooting depth [L] $\mathbf{b}'(\mathbf{z}) = \mathbf{Root}$ distribution function $[\mathbf{L}^{-1}]$ T_p = Potential transpiration rate [LT⁻¹] θ_r = residual water content θ_s = saturated water content α = inverse of the air-entry value (or bubbling pressure) *n* = pore-size distribution index K_s = saturated hydraulic conductivity l = pore-connectivity parameter, and m = 1 - 1/n

Geometry Information

- Number of Soil Material: 01
- Depth of Soil Profile: 3 m

Model Selection

- Soil Hydraulic Model: van Genuchten-Mualem
- Root Water Uptake Model: Feddes

Simulation Period: 61 days

- 4 wet periods (04 days each)
- 3 dry periods (15 days each)

Feddes Curve for Orange Tree

Estimation of Soil Hydraulic properties

- Soil Hydraulic properties: Estimated in HYDRUS 1D by using soil texture data*
- The soil texture of the study site (clay: 60%, silt: 25% and sand 15%)*

* Rosetta Dynamically Linked Library (DLL)
* Soil sample was collected from 15 cm below ground and Texture Analysis was done in Lab

Soil Hydraulic Parameter	Units	Value
Saturated hydraulic conductivity (K_s)	cm d⁻¹	21.12
Saturated soil water content ($\boldsymbol{\theta}_s$)	-	0.4957
Residual soil water content ($oldsymbol{ heta}_r$)	-	0.0992
The inverse of the air-entry value	d ⁻¹	0 0101
(or bubbling pressure) ($lpha$)	u	0.0191
Pore-size distribution index (<i>n</i>)	-	1.224
Tortuosity parameter in the conductivity function (<i>l</i>)	-	0.5 7

Boundary Conditions

- Upper Boundary Condition: Variable pressure head/flux
- Lower Boundary Condition: Free drainage

Input parameters

- Top flux: (Irrigated water +Rainfall)-Evaporation*
- Daily Potential Transpiration*
- Root Distribution- Assumed to be (90 cm)[†] and extends horizontally up to 2 m

Calculation of Irrigated water per day (Flood Irrigation)

Irrigated on 1 Acre of orchard (198 trees) for 12 h in a day:

$$1 Acer = 4046.87 m^2$$

Discharge rate of Bore well = $3.2 \frac{l}{s}$

$$3.2 \frac{l}{s} \times 60 \times 60 = 11520 \frac{l}{h}$$

Water is applied for 12 h in a day:

$$11520 \frac{l}{h} \times 12 h = 138240 \frac{l}{d} = 138.24 \frac{m^3}{d}$$
Applied water on unit area $= \frac{138.24 \frac{m^3}{d}}{4046.87 m^2} = 0.034156 \frac{m}{d} = 3.42 \frac{cm}{d}$

Scaling down sap flow data

- The circumference (S_T) of the orange tree was 0.52 m
- The sapwood area (S_A) was calculated as 0.30 m² (Granier A., 1987)

 $S_A = -0.0039 + 0.59 S_T$

Scaled Sap Velocity (V)

 $\mathbf{V} = (\mathbf{S}_{\mathrm{A}} \times \mathbf{V}_{\mathrm{sap}})/\pi \ \mathbf{r}^2$

r = Radius of root spread

 $V_{sap} = Measured sap velocity$

Experimental Set-up

Thermal Dissipation Probe (TDP) sensors Make: Dynamax Inc., U.S.A.

CR1000X Measurement and Control Datalogger, Make: Campbell Scientific, Inc., U.S.A

5 Year old orange tree (Young) Tree Height: 2.7 m Circumference: 25 cm 15 Year old orange tree (Mature)

Tree Height: 3.4 m Circumference: 52 cm

Automatic Weather Station Make: Rainwise Inc. U.S.A. 11

Estimation of Potential Evapotranspiration Rate

Parameter Source **Penman-Monteith equation Meteorological Parameters** $ET_{o} = \frac{1}{\lambda} \left[\frac{\Delta(R_{n} - G)}{\Delta + \gamma (1 + r_{c}/r_{a})} + \frac{\rho c_{p}(e_{a} - e_{d})/r_{a}}{\Delta + \gamma (1 + r_{c}/r_{a})} \right]$ (Temperature, Relative Humidity, Wind Speed, Weather **Station** Solar Radiation) **ET**_o = **Potential evapotranspiration rate** Soil Heat Flux λ = Latent heat of vaporization **NASA Satellite Cloud Fraction** Data Δ = Slope of the vapor pressure curve **Net Heat Flux** $\mathbf{R}_{\mathbf{n}} = \mathbf{Net} \mathbf{radiation} \mathbf{at} \mathbf{surface}$ **G** = Soil heat flux γ = Psychrometric constant **r**_c = **Crop canopy resistance** 1.2 **r**_a = Aerodynamic resistance DOY DOY ρ = Atmospheric density 756 **c**_n= Specific heat of moist air а (2.600 E (cm d⁻¹) 550 e_a = Saturation vapor pressure at T 450 400 e_d = Actual vapor pressure 350 300 30 DOY DOY

Partitioning and diurnal variation-PET

Partitioning of Potential Transpiration and Evaporation

$$T_{p} = ET_{p} (1 - e^{-k \text{ LAI}})$$
$$E_{p} = ET_{p} e^{-k \text{ LAI}}$$

 ET_p = Potential evapotranspiration, E_p = Pot. Evaporation, T_p = Pot. Transpiration

LAI = Leaf area index (4.2), k = Constant governing the radiation extinction by the canopy (0.5)

Diurnal Variation of Transpiration in HYDRUS-1D Model

$$T_{p}(t) = 0.24\overline{T_{p}} \qquad t < 0.264d, t > 0.736d$$

$$T_{p}(t) = \overline{T_{p}} \sin\left(\frac{2\pi t}{1 \text{ day}} - \frac{\pi}{2}\right) \quad t \in (0.264d, 0.736d)$$

Validation of HYDRUS Model

Validation of HYDRUS Model

Modeled and Measured Transpiration

Correlation Coefficient = 0.92 Nash–Sutcliffe efficiency (NSE)= 0.68

The model is able to reproduce sap flow values reasonably well

Results: Applied Flux, Transpiration and Drainage Below Root Zone

Drainage below the roots was 30.0 cm Applied top flux is exorbitantly high

Results: Applied Flux, Transpiration and Drainage Below Root Zone

Drainage below the roots was 30.0 cm Applied top flux is exorbitantly high and need to be optimised

Sensitivity analysis is the study of the effect of the variation of input parameters on the output of the model

Partial derivative based analysisLocal or one-at-a-time (OAT) analysis

Global Sensitivity Analysis

Covers all the input parameters including the affect generated due to the interaction of the parameters

More accurate and can be applied on complex and nonlinear models

Variance based Sobol' method

- Variance based Sobol' method is a widely used algorithm for environmental models
- •The variance of the model output can be decomposed in terms of different fractions
- Each fraction represents the affect of a particular parameter and its interaction with other parameters
- The sensitivity of parameters are expressed in terms of sobol's sensitivity indices

Sobol Total Sensitivity Index

$$S_{ti} = \frac{(1/2N)\sum_{j=1}^{N} \left[f(A)_{j} - f(A^{i}B)_{j}\right]^{2}}{(1/N)\sum_{j=1}^{N} \left[f(A)_{j}\right]^{2} - f_{o}^{2}}$$

$$S_{ti} = \frac{(1/2N)\sum_{j=1}^{N} \left[f(A)_{j} - f(A^{i}B)_{j}\right]^{2}}{(1/N)\sum_{j=1}^{N} \left[f(A)_{j}\right]^{2} - f_{o}^{2}}$$

$$f_o = (1/N) \sum_{j=1}^{N} f(A)_j$$
Hartman et al., 2017

A and B are the two set of random input parameter matrices

 $A^{i}B$ represents a matrix where all the columns are from matrix A except ith column (from matrix B)

N=5000, Nossent et al (2011)

The total number of simulations N(P+2) simulations = 35000 Saltelli (2002)

Steps of Sobol' Total Sensitivity Index Calculation

Soil Hydraulic Parameters							
Parameter	Lower limit	Upper limit					
θ_r	0.055	0.1					
θ_s	0.38	0.5					
α	0.01	0.13					
n	1.25	2.3					
K _s	6.0	355.0					

$P_i = P_{min} + (random \ value \times (P_{max} - P_{min}))$

a4 b4 c4 **d**44 e4

				4							В						
	θ_r	θ	5 0	t 1	1	Ks		θ_r	θ_{i}	5	α	n	ŀ	ζ,			
	a1	b	l c	1 d	1 0	e1		a11	b1	1	c11	d 1	1 e	11			
	a2	. Б	2 c	2 đ	2	e2		a 22	b 2	2	c22	d 22	2 e2	22			
	a3	b	3 c	3 đ	3	e3		a33	b 3	3	c33	d 33	3 e3	33			
	a 4	b	4 c	4 d	4 (e4		a44	b 4	4	c44	d 44	4 e4	44			
	-	-		-		-								-			
	ļ	18	5			A2B								Α	3B		
θ_r	θ_s	α	n	K_s		θ_r	θ_s	α	n	K	s	θ	r t) _s	α	n	K_s
a11	b1	c1	d1	e1		a1	b11	c1	d1	e	1	a	1 ł	01	c11	d 1	e1
a 22	b 2	c2	d 2	e2		a2	b22	c2	d2	e	2	a	2 ł	2	c22	d2	e2
a33	b 3	c3	d3	e3		a3	b33	c3	d3	e	3	a	3 E	3	c33	d3	e3
a44	b 4	c4	d 4	e4		a4	b44	c4	d4	e	4	a	4 ł	94	c44	d4	e4
		-	-												-		
A4B A5B																	
	θ,	. Ө	5 (τ	n	Ks		θ	$P_r \ell$	7 ₅	α	n	K_s				
	al	ь	1 c	1 d	11	e1		a	1 1	51	c1	d1	e11				
	a	2 Б	2 c	2 d	22	e2		a	2 1	02	c 2	d2	e22				
			_						a 1	-	- 2	10	- 2.2				

a4 b4 c4 d4 e44

Bootstrap Confidence Interval (BCI)

Archer et al. (1997)

- •To estimate the accuracy of the total sensitivity indices (variation)
- •Randomly re-sampling (2500 samples with replacement) from the output space of each matrix (5000)
- •1000 values of total sensitivity indices calculated for each parameter

Total Sensitivity Index

Drainage below root zone (-93 cm)

Transpiration

Parameter	Drainage below roo	t zone	Transpiration			
	Total Sensitivity (%)	BCI	Total Sensitivity (%)	BCI		
n	45	0.12	<10	0.043		
K _s	36	0.085	58	0.27		
α	<1	< 0.001	60	0.24		
θ_s	18	0.043	<1	< 0.001		
θ_r	<1	< 0.001	<1	< 0.001		

- The cumulative transpiration ranged between 3.5-7.1 cm (50% variation)
- In clay type soil the oxygen stress is developed due to low hydraulic conductivity
- In case of sandy soil no water stress developed and transpiration happens at potential rate (T_p) due to high water application rate
- Therefore the relative frequency distribution is left skewed and more than 60% simulations exhibit T_p

Drainage Below the Root Zone

- The cumulative drainage below root zone ranged between 26-54 cm
- High drainage observed towards sandy soil
- The relative frequency distribution is also left skewed

Irrigation Schedule Optimisation

□ The water is getting stored in soil (23 cm)

□ Total 30 simulations -Decreasing applied Top flux by 0.1 cm/day

Lesser decrease in transpiration than the drainage below root zone

Irrigation Schedule Optimisation

Optimization Criteria

Changing Applied Irrigation
 Changing Irrigation interval
 Changing Initial soil moisture condition

Initial soil moisture 0.2

2 cm per day for 4 days then 25 days interval

Initial soil moisture 0.33

0.3 cm per day at every 12 days interval

Conclusion

- **Good agreement** was achieved between HYDRUS-1D simulations and field measured sap flow
- The WUE for the present practice of flood irrigation was observed to be only 20%
- The GSA shows pore-size distribution index and saturated hydraulic conductivity has a major influence on the leakage below the root zone
- In contrast, the air-entry-pressure parameter and saturated hydraulic conductivity have a major influence on transpiration
- The initial conditions (Soil-water) play a significant role in calculating WUE
- Sensor based approach to trigger and control irrigation should be adopted for high WUE

THANK YOU

Does anyone have any question?

Email: ashutoshm095@gmail.com ak.mishra@neeri.res.in +91-8005313005