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Abstract: The pollutant emissions from vehicles are forming major sources of metallic15
nanoparticles into the environment and surrounding atmosphere. In this research we16
spectrochemicaly analyse chemical composition of Particle Matter emissions from in-use Diesel17
engine passenger vehicles. We have extracted Diesel Particulate Matter from the end part of the tail18
pipe, from more than seventy different vehicles. And in laboratory we have used the high19
resolution laser induced plasma spectroscopy (LIBS) spectrochemical analytical technique to20
sensitively analyse chemical elements in different DPM. We have found that PM is composed of21
major, minor and trace chemical elements. The major compound of PM is not strictly Carbon22
element but rather other adsorbed metallic nanoparticles such as Iron, Chromium, Magnesium,23
Zinc, Calcium. Beside the major elements of DPM there are also minor elements: Silicon, Nickel,24
Titan, Potassium, Strontium, Molybdenium and others. Additionally in DPM are adsorbed atomic25
trace elements like Barium, Boron, Cobalt, Copper, Phosphorus, Manganese and Platinum. All26
these chemical elements are forming significant atomic composition of real PM from in-use Diesel27
engine vehicles.28
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34

1. Introduction35
The pollutant emissions from vehicles are forming major sources of metallic nanoparticles into36

the environment and surrounding atmosphere [1, 2]. Most of these emissions are from Diesel engine37
vehicles either passengers or heavy-duty truck engines [3]. For human health it is very important to38
breathe clean, non-polluted air; not only for lungs and our cardiovascular system, but also for the39
brain and central nervous system [4, 5]. After long term exposure to Particulate Matter (PM) the40
accumulation of nanoparticles in our body can cause the pulmonary disease, lung infection,41
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pneumonia, asthma, cardiovascular diseases as well as neurological and mental diseases. The42
existing emission standards Euro 6 [6, 7], Tier 3 [8], or LEV III [9], for Diesel engine passenger43
vehicles specify the maximum allowable emissions of hydrocarbons, carbon monoxide, nitrogen44
oxides and for particulate matter, as the total number of all particles, from Diesel exhaust fumes.45
However, there are no specific emission standards for additional compounds or chemical elements46
contained in the exhaust emissions, particularly in exhaust vapour [10], particulates, particulate47
matter, Diesel Particulate Matter (DPM) [11], black carbon / carbon black (BC/CB), or in the soot [12],48
formed by the Diesel [13] or Biodiesel [14], from combustion engines. Even though chemical49
elements adsorbed to carbon particulates, present a significant fraction of total DPM or soot emission50
contents [15]. Therefore accurate in-situ technique to assess the on-line elemental composition51
analyses of particulate matter from automotive pollutant emissions would be desirable. The aim of52
this study is to use high resolution laser induced breakdown spectroscopy (LIBS) technique [16] for53
precise spectrochemical analytical characterisation of particulate matter emissions generated from54
in-use Diesel engine passenger vehicles.55

2. Experiments56

High resolution Laser Induced Breakdown Spectroscopy setup57

Experimental laser induced breakdown spectroscopy setup for spectrochemical analytical58
studies of Diesel particulate matter collected from in-use Diesel combustion engine passenger59
vehicles consists of high intensity pulsed laser system Nd:YAG laser, with nanosecond laser pulse60
duration, experimental chamber, collimating and focusing optics and high precision optical61
spectrometer [17]. The plasma is generated by focusing high intensity laser pulse radiation into the62
target material. Usually a solid state laser or diode pumped laser is applied at its fundamental63
wavelength of 1064 nm or the second harmonic at 532 nm with repetition rates from 1 Hz to few kHz64
[18]. A schema of experimental LIBS setup is shown in Figure 1.65

66

67
Figure 1. Layout of the Laser Induced Breakdown Spectroscopy experimental setup. LS - laser68
source (Nd:YAG laser, Yasmin, Quantel, France), M - Mirror, P - plasma, S - sample, FL -  focusing69
lens, L1 and L2 - optical telescope, OS - optical spectrometer (Aryelle Butterfly, Echelle70
spectrograph, LTB Berlin, Germany), D - ICCD detector (PI-Max 4, Princeton Instruments, USA).71

72
To generate the laser induced breakdown from Diesel particulate matter samples, Nd:YAG73

solid state laser - Yasmin, from Quantel, France has been used. It has been operated at the74
fundamental laser wavelength 1064nm with pulse duration 8.5ns and laser energy 300mJ per single75
pulse. Due to the large number and different origin of DPM matrices, we applied higher laser76
energy, to enhance the optical emission from the plasma and gain signals from the infrared, visible77
as well as ultraviolet spectral region. The laser radiation has been focused with a 10 cm focusing lens78
into the plane DPM solid target surface to create a plasma. Optical emissions from the plasma have79
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been collected perpendicularly, via an optical telescope, into the high resolution Echelle80
spectrograph, model Aryelle Butterfly from LTB Lasertechnik Berlin, Germany equipped with an81
ICCD detector PI-Max 4 from Princeton Instruments, USA. The spectrometer consists of two82
separate spectrographs, one for the UV range from 190nm to 440nm and the second unit for VIS83
optical spectrum in a range from 440nm to 800nm. The spectral resolution capability is from 3 pm to84
7 pm (pm = picometre) for the UV range and from 4 pm to 8 pm for the VIS range, thus providing85
spectral information of a broad range with very high resolution and variability. Optical emissions86
from the plasma have been collected from ultraviolet to infrared spectral window, thus the total87
spectrum from 190nm to 800nm has been recorded. The delay time for starting recording of the88
optical spectral signal has been set to 1s after the trigger signal, and gate time for spectral89
acquisition has been set to 2s. In earlier delay times than 1s, the black body radiation is90
dominating in the laser induced plasma, while for later time intervals like 3s the atomic and ionic91
emissions start decaying [19]. The LIBS emission has been measured in open air atmosphere at92
atmospheric pressure and room temperature.93

94

3. Results95

3.1 Major chemical elements in Diesel Particulate Matter96
Major chemical elements in Diesel Particulate Matter were obtained by Laser Induced97

Breakdown Spectroscopy setup shown in previous chapter. Examples of measured LIBS spectra98
from different Diesel Particulate Matter samples are shown in Figure 2. In this figure, x-axis99
represents the measured spectral wavelength and the y-axis represents the intensity of measured100
spectral LIBS signal, in the arbitrary units (a.u.). Arbitrary units are used due to the lack of absolute101
intensity signal. Therefore, this is the reason why in practice, the LIBS signal has to be further102
calibrated. Measured laser induced breakdown optical spectra obtained from DPM exhibits typical103
line spikes with distinct line peaks, generated from atomic, ionic and molecular spectral transitions104
corresponding to different chemical elements. In Figure 2 spectrographs we can observe strong105
optical line emission mainly from major chemical elements: in spectrum a) Ca, Mg, Zn; in spectrum106
b) Ca, Cr, Fe, H, Mg, Na and in spectrum c) Al, C, Ca, Cr, Mg, O.107

108
Figure 2.  Laser Induced Breakdown Spectroscopy signal measured from three different Diesel109

Particulate Matter samples. Intense spectral lines are from major chemical elements - spectrum a) Ca,110
Mg, Zn; spectrum b) Ca, Cr, Fe, H, Mg, Na and spectrum c) Al, C, Ca, Cr, Mg, O.111
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112
113

Figure 3. High resolution LIBS spectra from 67 samples of Diesel Particulate Matter extracted from114
in-use Diesel engine passenger vehicles. Optical emission is from major chemical elements: Carbon115
(a), Calcium (b), Iron (c), Chromium (d), Sodium (e), Zinc (f), Aluminium (g), Magnesium (h),116
Oxygen (i) and Hydrogen (j).117

118
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In Figure 3 are shown high resolution LIBS spectral data from 67 samples of Diesel Particulate119
Matter extracted from in-use Diesel engine passenger vehicles. Spectra are from most abundant120
lines from major chemical elements: Carbon (a), Calcium (b), Iron (c), Chromium (d), Sodium (e),121
Zinc (f), Aluminium (g), Magnesium (h), Oxygen (i) and Hydrogen (j) spectral lines. Measured122
chemical elements were in our previous publications characterised as major components of Diesel123
Particulate Matter. More details related to this study are explained in the references [15, 20].124

3.2 Minor chemical elements in Diesel Particulate Matter125
In order to spectroscopicaly characterise the minor chemical elements in Diesel Particulate126

Matter, state-of-the-art laboratory LIBS setup was build to obtain optical emission spectral images127
with high spectral resolution. The results from these measurements are shown in Figure 4. In this128
figure, x-axis represents measured wavelength of peak spectral signal and y-axis represents the129
intensity of LIBS signal in arbitrary units. Here we mainly focus our research to minor chemical130
elements. These are particularly minor spectral lines from Silicon, Nickel, Titan, Potassium,131
Strontium and Molybdenum atomic or ionic optical emission.132

133

134

Figure 4. Optical emission from minor chemical elements measured by LIBS from different Diesel135
Particulate Matter samples. Spectrum from: a) Silicon, b) Nickel, c) Titan, d) Potassium, e) Strontium136
and f) Molybdenum.137

138

139
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4.3 Trace chemical elements in Diesel Particulate Matter140
To identify trace elements in various DPM matrices, optical detection of LIBS setup was further141

optimised, to obtain good quality signal to noise spectral signal.142
143

144
Figure 5. Optical emission spectra from trace elements: Barium (a), Boron (b), Cobalt (c), Copper (d),145
Phosphorus (e), Manganese (f) and Platinum (g), measured by high resolution LIBS technique from146
Diesel particulate matter collected from in-use passenger Diesel engine vehicles.147
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Optical emission spectra from atomic and ionic lines of selected trace elements in DPM are148
shown in Figure 5. These signal peaks are particularly from: Barium (a), Boron (b), Cobalt (c),149
Copper (d), Phosphorus (e), Manganese (f) and Platinum (g). Here we only select few DPM samples150
with pronounced LIBS signal, to clearly interpret measured results from trace elements.151

152

4. Discussion153

In this study we shortly shown LIBS technique for sensitive measurements of major, minor and trace154
chemical elements contained in the Diesel particulate matter. From obtained data we can summarise155
that the Laser Induced Breakdown Spectroscopy technique can sensitively identify chemical156
elements in particulate matter. LIBS can provide qualitative as well as quantitative analyses of157
chemical composition of DPM. The exact composition of DPM exhaust emissions from in-use Diesel158
engine passenger vehicles is related to different processes involved during the engine combustion as159
well as applied exhaust filtering devices. Due to complex processes involved within the combustion,160
agglomeration of chemical elements in exhaust emissions occurred. These processes depend on161
engine type, engine size, engine operation conditions, type of fuel, quality of fuel, additives,162
lubricants and aftertreatment devices. All these devices and conditions modify the exhaust163
emissions and final chemical composition of emitted PM from in-use Diesel engine vehicles. Up to164
now, it is not distinct which of these sources are mostly influencing the composition of DPM.165

166

5. Conclusions167
To summarise, in this proceeding we have shown the spectrochemical characterisation of168

particulate matter emissions generated from in-use Diesel engine vehicles. We have extracted Diesel169
Particulate Matter from the end part of the tail pipe, from more than seventy different vehicles.170
Afterwards in laboratory we have used the high resolution laser induced plasma spectroscopy171
(LIBS) spectrochemical analytical technique to sensitively analyse chemical elements in different172
DPM. We have found that PM is composed of major, minor and trace chemical elements. The major173
compound of DPM is not strictly Carbon element, but also other adsorbed nanoparticles such as:174
Iron, Chromium, Aluminium, Zinc, Magnesium, Calcium, Sodium, Oxygen and Hydrogen. Beside175
the major elements of DPM there are also minor chemical elements: Silicon, Nickel, Titan, Potassium,176
Strontium, Molybdenium and others. Additionally in DPM are adsorbed atomic trace elements:177
Barium, Boron, Cobalt, Copper, Phosphorus, Manganese and Platinum. All these chemical elements178
are forming significant atomic composition of real particulate matter from in-use Diesel engine179
passenger vehicles.180

In future, we would like to identify individual sources of major, minor and trace chemical181
components of DPM exhaust emissions. It is important to understand from where these elements are182
coming from. The further classification of primary sources responsible for these metallic183
nanoparticles in Diesel particulate matter would be an asset. All these information will be helpful for184
developing of LIBS method as accurate in-situ technique for on-line elemental composition analyses185
of particulate matter emissions from vehicles and hence to be able to minimise the pollutant186
emissions from in-use Diesel engine driven vehicles.187
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