

Tracking Control for Piezoelectric Actuators with Advanced Feed-forward Compensation Combined with PI Control

<u>Cristian Napole</u>, Oscar Barambones, Mohamed Derbeli, Mohammed Yousri Silaa, Isidro Calvo and Javier Velasco.

Universidad del País Vasco Euskal Herriko Unibertsitatea

<u>Piezoelectric Actuators : State of art</u>

- Active Vibration Systems.
- Sensing.
- Energy Recovery.
- Stick-slip motors.

Nonlinearities

- <u>Hysteresis</u>
- Creep.
- Vibration dynamics.

Common controllers

- SMC.
- SMC w/ PID.

In this research:

- Feedback-Feedforward control architecture for ^(a) PEA tracking.
- FF compared: Artificial Neural Networks (ANN) & Hammerstein Wiener (HW).
- Feedback controller: Proportional-Integral (PI).
- Performance metrics: error analysis, control signal and integral of absolute error (IAE).

Hardware involved

PEA Driver	PK4FYC2 PEA			
0-10V 0-10V 0-150V 0-150V 0-150V 0-150V	TR4FTC2TEA	Properties	Values	Units
		Physical Dimensions	7.3x7.3x36	mm
		Max displacement	38.5	μm
	- All	Max force	1000	Ν
	Correct1	Drive voltage range	0-150	V
	Small Measured	Error due to hysteresis	15	%
0-10V PEA Reader Amplified Signal	Signal Fre-amplifier AMP002			

eman ta zabal zazu

Hysteresis description

- Triangular input signal.
- Amplitude: 145V.
- Period: 1s.
- Sampling time: 1kHz.

C.J

ANN Settings

- TDNN
- Training set: Input voltage & displacement along 10s.
- 70/15/15 data split.
- Levenberg-Marquardt training algorithm.
- 22 neurons.
- 5 delays.
- Metric: mean squared error (MSE).

- Input/ Output Polynomial.
- Training set: Input voltage & displacement along 10s.
- Metric: fit percent.

<u>Results:</u> Hysteresis fitting

Universidad Euskal Herriko del País Vasco Unibertsitatea

eman ta zabal zazu

<u>Results:</u> Hysteresis fitting

Α

Universidad Euskal Herriko del País Vasco Unibertsitatea

eman ta zabal zazu

<u>Results:</u> Tracking performance

<u>Results:</u> Tracking performance

- $IAE_ANN = 0.0384.$
- IAE_HW = 0.0486

Universidad Euskal Herriko del País Vasco Unibertsitatea

Conclusions

- Experiments with a commercial PEA were carried.
- The hysteresis plot was obtained.
- ANN & HW was used for mapping and feed-forward.
- A PI controller was implemented in the feedback loop.
- HW has a good performance in terms of control action.
- ANN behaves better in terms of tracking (Lowest IAE).
- Future research: Comparison with advance PI controllers (FPID, neural), other ANNs configurations (LSTM), different HW configuration or optimisation, etc.

el País Vasco

Unibertsitatea

<u>Acknowledgements</u>

- Basque Government. •
- Diputación foral de Álava.
- Basque Country University. ۲

