

Numerical studies on the design of self-resetting active bistable cross-shaped structure for morphing applications

Anilkumar P. M., A. Haldar, S. Scheffler, B. N. Rao and R. Rolfes

Presented by,
P. M. Anilkumar

PMRF-DAAD Doctoral Student

\square

Content of the presentation

> Introduction
$>$ Motivation
$>$ Aim of research
$>$ Content of the work
\Rightarrow Conclusion

Introduction

INSTITUT FÜR STATIK UND DYNAMIK

Fin to the Wind

Harvesting Desert Fog

Shinkansen Bullet Train

Firefly Lightbulbs

Leibniz
Universität
Hannover

Introduction

Morphing structures are used in reconfigurable structures, solar tracking models, energy harvesters, etc..

Normal aircraft wing

One of the possible ways?

Morphing Wing

\author{

Multistable Structures

}

Introduction- Bistable laminates

Bistability

Cured shapes of laminates

Cured shapes modelled analytically
(Reference: Haldar et al., 2018)

Cured shapes modelled Numerically \square

| 1 | 1 |
| ---: | ---: | ---: |
| 10 | 2 |
| 100 | 4 |

Motivation

- Design of an active bistable cross-shaped laminate

Concern 1: How to attain multistable structure? Approcach: Only by connecting laminates

Concern 2: How to connect this bistable laminates? Approach: Without any external aids

Concern 3: Design of size and location of MFCs? Approach: With a parametric study

Concern 4: Potential application? Approach: Energy harvesting
\square

Aim of Research

1. How to design? Important questions
\checkmark Selection of an appropriate geometry
\checkmark Selection of size and location of MFCs

Steps followed

Numerical Study

- Using FE Software, Abaqus
- To obtain multistable shapes

Geometry considered

Geometry considered

(a) Geometry-1

(b) Geometry-2

Cool-down shapes, geometry-1

Figure: Cool-down stable shapes obtained for geometry-1 after curing stage

| 1 | 1 |
| ---: | ---: | ---: |
| 10 | 2 |
| 100 | 4 |

Hannover

Cool-down shapes, geometry-2

Figure: Cool-down stable shapes obtained for geometry-2 after curing stage

Design of MFCs

Top side of bistable part

Bottom side of bistable part

Design of MFCs

Top side of bistable part

Bottom side of bistable part

Leibniz
Universität
Hannover

MFC bonded shapes

Figure: MFC bonded stable shapes obtained for geometry-2 after curing stage
\square

1	1
10	2
100	4

MFC bonded shapes

MFC bonding

Cool-down shape
MFC bonded shape
\square

| 1 | 1 |
| ---: | ---: | ---: | ---: |
| 10 | 2 |
| 10 | 4 |

Leibniz Universität
Hannover

Snap-through voltages

Snap action	Voltage (V)	
	Top MFC	3196
	Bottom MFC	-799
Snap-back	Top MFC	3640
	Bottom MFC	-910

$\begin{array}{rrr}1 & 1 \\ 10 & 2 \\ 100 & 4\end{array}$
Leibniz
Universität
Hannover

Conclusion

- Numerical study of an active bistable cross-shaped structure consisting of symmetric and unsymmetric laminate actuated using Macro Fibre Composite (MFC) actuators has been proposed.
- A set of MFCs are identified to trigger the snap-through and snapback actions
- As the calculated snap voltages are higher than the working range of MFC actuators, an optimization scheme is recommended as future scope to identify suitable positions and size of MFC actuators.
\square

Thank you

DAAD

\square

