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Abstract: Recent advances in miniaturized actuators and sensors have enabled the development of 

cooperative systems, in which a complex global task is achieved through the joint collaboration of 

several micro-units. Achieving system miniaturization while maintaining the desired 

actuation/sensor and cooperative functionality, however, is generally quite challenging from the 

practical point of view. Smart material transducers based on dielectric elastomer (DE) membranes 

represent a technology with great potential for the design of high-performance microactuator 

systems. By designing a miniaturized array of DE taxels, their simultaneous actuation and sensing 

capabilities can be used to develop large deformation, energy-efficient, multi-functional, and 

cooperative systems. In addition, the high flexibility of DE material makes the developed system 

highly suitable for new application fields, such as wearables and soft robotics. To properly design, 

optimize, and control cooperative DE systems, accurate mathematical models need to be developed 

first. In this paper, we present a novel physics-based model for an array of three DE actuator taxels. 

Such model represents the first step towards the development, optimization, and control of a 

complex cooperative matrix actuator. Through the proposed model, it is possible to describe the 

coupling existing between the DE elements, and predict how such coupling effects influences the 

complete system performance. After presenting the model, the effect of geometrical parameters on 

the spatial coupling response is studied by means of numerical simulations.  

Keywords: dielectric elastomer, DE, modeling, simulation, array, cooperation. 

 

1. Introduction 

A Dielectric elastomer (DE) transducer consists of an elastomer film sandwiched between two 

compliant electrodes. DEs can be effectively used as actuators, because they transform electrical 

energy into motion. By applying a high voltage to the electrodes, a Maxwell stress is generated into 

the membrane, which results in a thickness reduction and a in subsequent area expansion [1]. 

Furthermore, due to the correlation existing between deformation and electrical capacitance, DEs can 

also function as sensors. In recent years, DEs have gained significant popularity thanks to their 

numerous advantages, such as high deformation (on the order of 100%), high flexibility, lightweight, 

energy efficiency, low cost, and self-sensing (i.e., they can work as actuators and as sensors at the 

same time) [1]. Nowadays, DEs appear as a very promising technology well suited for both for 

industrial applications (e.g., industrial valves [2,3] or pumps [4,5]) as well as less conventional ones 

(e.g., loudspeakers [6,7], soft robots [8,9,10], braille displays [11,12], medical robots [13], and artificial 

muscles [14], to mention few examples).  

Despite a number of DE applications has been successfully developed and validated, up to now  

they are mostly operated at the macroscale level. Only few examples of micro-scale DE devices have 
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been currently presented, e.g., [15]. This general lack of micro-scale DE systems is mainly due to 

many practical issues encountered during the miniaturization process. In fact, scaling a DE device 

while maintaining the desired actuation/sensing functionality and flexibility presents a number of 

practical and technological challenges. It is remarked how, up to date, many of those issues are still 

open. Once DE microtechology is properly investigated and understood, it will allow the design of a 

new generation of micro-robots, micro-optical systems, and wearable devices, possibly capable of 

intelligent and cooperative features. To effectively understand and optimise such kind of cooperative 

DE microactuators, accurate models and simulation tools play a key role. Due to the highly non-linear 

behavior of the material, however, modelling of complex DE strcutures is generally highly involved. 

In addition, the geometric nonlinearities, the electromechanical coupling, and the neighbour effects 

that exist between adjacent elements in an array actuator further complicate the overall analytical 

description. We remark, however, that the state-of-the-art literature severely lacks of systematically 

investigations on modeling and performance scalability for cooperative and small-scale DE systems. 

As a first step towards this field, in this paper we present the preliminary development of a 

physics-based model for a cooperative DE structure. The system under investigation consists of three 

DE actuator (DEA) elements arranged in an array configuration. By properly controlling the different 

membranes, cooperative actuation/sensing features can be effectively implemented. The 

development of a model which can be used for system analysis, simulation, and control represents a 

fundamental step towards this goal. The proposed physics-based model takes into account the 

kinematic nonlinearities due to geometry and boundary conditions , together with the 

electromechanical coupling existing between the DEA taxels. These interactions depend on various 

design parameters, such as the size of the individual membranes, their relative spacing, as well as the 

mechanical pretensioning mechanism. After developing the constitutive equations, a numerical 

study is performed in order to understand the relationship between several design parameters (e.g., 

geometry, pre-stretch, mechanical bias) and the behaviour of the considered array, focusing on the 

quasi-static actuation performance. 

The remainder of this paper is organized as follows. In Section 2, a simulation model for an array 

of three actuators composed by DE membranes (DEA) is developed. Then, in order to understand the 

relationship between the geometry and the behaviour of the overall system, a parameter study is 

conducted in Section 3. Finally, concluding remarks are discussed in Section 4. 

2. Methods 

This section presents the model of an array of three DEA elements. Figure 1 reports a top-view 

sketch of such a system. A cross-sectional depiction of the array is illustrated in Figure 2, based on 

the section determined by the dashed line in Figure 1.
 

 

 

 

 

 

 

Figure 1. Top view of the DEAs array. The dashed line represents the transversal plane on which the 

model is based. 
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Figure 2. 2-D cross-sectional view of DEAs array: (a) Undeformed configuration; (b) configuration 

after horizontal pre -stretch; (a) configuration after adding biasing systems; (d) configuration after 

electrical activation of the second DEA. 

The system consists of three circular DE membranes (depicted in black) printed on a passive 

silicone membrane (depicted in brown). The left- and right-hand sides of the passive silicone 

membranes are rigidly clamped to a fixed frame (not shown in Figure 1). Each DEA is preloaded out-

of-plane with a biasing mechanism, i.e., a pre-compressed linear spring. The deformation of the 

actuators is guided via a circular rigid frame located at the center part of each DE membrane (depicted 

in yellow), which is also used to ensure a connection with the biasing elements. Finally, in the regions 

of silicone which connect two adjacent membranes, additional elastic elements are insterted (depicted 

in grey). Such elements are used to represent possible compliant connections between the silicone 

membrane and a rigid frame. They will be particularly useful to understand how the stifffness of 

those connecting element influences the interaction among neighbor actuators .  

To reflect the overall system behavior, four different phases are considered in Figure 2: 

 The membrane is initially flat (a); 

 An in-plane pre-stretch is applied to the flat membrane (b); 

 An out-of-plane force is supplied via the biasing springs (c); 



1st International Electronic Conference on Actuator Technology: Materials, Devices and Applications (IeCAT 2020) 

4 
 

 The pre-stretched and biased DEA is finally actuated (d). 

The purpose of phases (b) and (c) is to obtain a radial preload force to which each DE membrane is 

subject. This force depends on DE geometry (internal radius, external radius, material stiffness), 

amount of in-plane pre-stretch, and biasing spring parameters (undeformed length and stiffness). 

The application of such a preloading force is important, indeed, in order to achieve an actuating 

stroke. After establishing an equilibrium between the forces of the pre-stretched membrane and the 

biasing system, the DEAs can be actuated by applying a high voltage. As explained above, the 

activated membrane increases its surface area as a result of the Maxwell stress. This effect can be also 

interpreted as a voltage-induced membrane softening, since the in-plane force tends to decrease if 

the deformation is kept constant. A force imbalance is then created between the elastomer and the 

biasing element, which, in turn, displaces the DEA rigid spacer upwards until a equilibrium 

configuration is achieved. The resulting actuated configuration is reported in Figure 2 (d). 

2.1. System modeling 

To better understand the relationship between geometry and actuation performance, as well as 

the mutual interaction among the DEAs, a physics-based model is developed in this section. For 

simplicity, the model describes a two-dimensional section of the array (according to Figure 2), rather 

than the full three-dimensional system. In this way, it it possible to capture all the essential actuation 

features with a good trade-off between complexity and accuracy. The spacers are described as rigid 

bodies, capable of both translation and rotation on the plane. Each DEA and silicone element is 

modeled as a lumped linear spring, whose reaction force depends on the amount of stretching. As a 

further modeling assumption, the electrical DE activation is implemented as an equivalent stiffness 

reduction in the corresponding spring element. 

Figure 2 illustrates the main geometric parameters of the system in geometrical different  

configurations, i.e., undeformed membrane (a), pre-stretched and unbiased membrane (b), and full 

biased system. These parameters are listed below: 

 r1,2,3: DE inner radius of the membrane 

 lsi0, i∈ {1, 2, 3}: initial length of the silicone membrane i; 

 lDEi0, i∈ {1, 2, 3}: external radius of the DE membrane i; 

 d: horizontal pre-stretch carried out during the first phase; 

 O : origin of the fixed reference, with the y-axis oriented orthogonally to the ground; 

 w : distance between the point for biasing system attachment and the origin O; 

 Gi, i ∈ {1, 2, 3}: coordinates of the center of mass of the rigid spacer i, with respect to the origin 

O; 

 θ: angle of rotation of the rigid frame with respect to its center of mass; 

 lDEij, i ∈ {1, 2, 3}, j ∈ {1, 2}: equivalent length of the DE membrane, where i indicates the actuator 

and j the element. 

Other relevant parameters, that do not appear in Figure 2, are given in the following: 

 di0, i ∈ {1, 2, 3}: undeformed length of the byasing system; 

 kBi, i ∈ {1, 2, 3}: rigidity constant of the biasing systems; 

 kFi, i ∈ {1, 2}: rigidity constant of the central element, positioned between the actuators; 

First of all, independent models are produced for the DE membranes and the structural 

elements, based on an energetic approach. Then, the full electro-mechanically coupled model that 

describes the complete system is generated. Since in this paper we focus on the prediction of the 

quasi-static performance, only the characterization of the potential energy is relev ant for the model 

development. To describe the system configuration, the following vector q of generalized variables 

are chosen: 
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1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 1 2 .x x x y y y x x x y y y x x x y y y x x y y

T
q B B B B B B G G G G G G E E E E E E F F F F       

 (1) 

All the variables appearing in (1) are represented in Figure 2(c). On the basis of (1), as well as the 

constant geometric parameters defined above, we determine the coordinates of the remaining points 

in Figure 2(c) with respect to the fixed reference O, as follows: 

  1 0,0 ,A    (2) 

     , 2,3,,i ix iyF iA q F    (3) 
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    cos , s ,in , 1,2,3i ix i i iy i iD iq G r G r       (5) 
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The force of each flexible element (i.e., DEA and passive silicone) can be expressed as a function of 

the corresponding length. In compact form, we can express the vector of DE lengths lDE and silicone 

lengths lS as a function of q, as follows: 
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  (8) 

Next, we need to characterize the system potential energy  as a function of q. This quantity can be 

decomposed in the sum of several contributions, representing the potential energy of the rigid frames 

 RF, the DE membranes DE, the silicone membranes S, the biasing springs B , and the frame stiffness 

elements F, as follows 

            .RF DE S B Fq q q q q q       (9) 

The first contribution in (9) solely consists of the gravitational potential energy of each frame, 

expressed as follows 

  
3

1

,RF RFi iy

i

gGq m



   (10) 

where mRFi represents the mass of rigid frame i, and g is the gravitational acceleration. The DE 

potential energy can be simply modeled as folows 
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where the first term describes the elastic potential energy, in which kSij and lDEi0 represent the stiffness 

and the undeformed length of the corresponding DE membrane (cf. Figure 2(a)), while the second 

and third terms describe the potential gravitational energy associated to the DE mass mDEi. In a similar 

way, we can also represent the potential energy of the silicone in the following way  
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where kSij and lSi0 represent the corresponding silicone stiffness and undeformed lengths, while mSi 

and lSi0 represent the corresponding length in the undeformed state (cf. Figure 2(a)). Finally, the 

potential energy of the biasing springs and the frame connectors is modeled as follows  
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where kBi and kFi represent the corresponding stiffness of biasing system and central elastic elements, 

while di0 represent the corresponding linear spring length in the undeformed state. Additional 

quantities Gi, Hi, and HFi represent coordinates of the center of mass of the rigid frame i, the clamping 

point of the biasing system, and of the central elastic element (cf. Figure 2(a)). 

Once the total potential energy is available, the constitutiv e equations of the system can be 

computed by solving the following equilibrium condition (the result follows immediately from 

Lagrangian mechanics) 

 
 

0.
q

q



  (15) 

Note that (15) consists of a system of nonlinear algebraic equations. By solving (15) for q via 

numerical methods, the corresponding system configuration can be computed. Note how the 

activation of DEA i is modeled as a reduction of kDEij. In this way, we can solve equation (15) for 

different values of kDEij, and compute the corresponding equilibrium configuration in both unactuated 

and actuated states. 

3. Results and discussion 

The simulation model, characterised in the previous section, is used to identify the relationship 

existing between the variation of the geometric parameters and the final configuration of the whole 

system considered. The simulations are conducted by considering the following nominal parameters 

values, chosen in order to reflect the typical behavior of DE systems: 

 d = 0.01 m; 

 w = - 0.01 m ; 

 ri, i∈ {1, 2, 3} = 0.0025 m; 

 lDEi0, i∈ {1, 2, 3} = 0.01 m; 

 lSi0, i∈ {1, 2, 3} = 0.01 m; 

 mDEi, i∈ {1, 2, 3} = 0.0118 g; 

 mSi, i∈ {1, 2, 3} = 0.028g; 

 mRFi, i∈ {1, 2, 3} = 10 g; 
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 kDEi, i∈ {1, 2, 3} = 19.6 kN/m; 

 kSi, i∈ {1, 2, 3} = 19.6 kN/m; 

 kBi, i∈ {1, 2, 3} = 10 MN/m; 

 kFi, i∈ {1, 2} = 0 N/m; 

 di0, i∈ {1, 2, 3} = 0.02 m. 

The DEA activation is simulated by reducing kDEi by a factor of 20 %. 

Simulations are conducted by keeping all parameters constant at nominal value and changing only 

one of them at each iteration, setting different values listed below : 

 α = [10-6, ..., 106]: ratio between the stiffness of the elastic element placed in the centre between 

two DE membranes (kF) and the silicone stiffness (ks); 

 kBi = [103, ..., 108]: stiffness of the biasing system; 

 µ = [20%, ..., 80%]: percentage variation of the DE length (lDEi0) relative to the sum of the DE and 

silicone lengths (3 lDEi0 + 3 lSi0) (this value will be kept as constant throughout the study). 

These values are chosen in such a way to establish a useful sub-range, which shows how the steady-

state values of the rigid frames vertical positions (i.e., G1y, G2y, G3y) undergo variations when the above 

listed parameters vary. Thus, it will be possible to understand which geometric value needs to set in 

input to obtain a desired output configuration.  

The results are shown in Figure 3- 5, where the first and second lines show the output obtained 

by activating the second and third DEA, respectively. The steady state value os computed as the the 

corresponding equilibrium value of Giy, while the stroke is calculated as the absolute value of the 

corresponding variable before and after the actuation. In Figure 3, we can see that for high kFi values 

the stroke of non-actuated membranes is zero, while a coupling effect is observed for low kFi values. 

This indicates that the softer the central elastic element, the greater the influence that the actuation of 

one DEA has on the other two. Furthermore, it is interesting to note that for low kF values, we always 

get G2y (central DEA) values are greater than both G1y and G3y (side DEAs). On the other hand, we 

observe the opposite situation if we only look at the stroke stroke is concerned. This is due to the fact 

that, when the stiffness of the central element is too low, the second actuator will very close to a 

singular configuration (i.e., a quasi-flat DEA membrane which prevents an in-plane Maxwell stress 

to be transmitted out-of-plane), causing a zero stroke during its actuation and a greater influence on 

the strokes of the neighbours. 

Based on these considerations, we decided to continue the study of the remaining parameters 

considering by completely the absence of the central element (i.e., kFi = 0). In this way, we aim at 

emphasizing the mutual dependencies among neighbor actuators. In fact, extending the explanation 

of the singular configuration also to these studies, it is evident that the effect of the actuation of the 

second DEA is more strongly affected than the remaining ones (Figure 4). Furthermore, it can be seen 

that increasing the stiffness of the biasing system leads to larger steady-state values, but at the same 

time to a zero stroke (thus making this phase not meaningful). 

Finally, in Figure 5 it can be seen that as the relative amount of DE increases, the stroke increases 

as well. This is expected, since the greater the portion of the membrane softened induced by the 

applied voltage, the greater the expected stroke. 
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Figure 3. Steady values of G1y, G2y, G3y, (left-hand side) and corresponding vertical actuation stroke 

(right-hand side), achieved by varying the ratio between the stiffness of the frame element kFi and the 

stiffness of the silicone kSi. 

  

 

Figure 4. Steady values of G1y, G2y, G3y, (left-hand side) and corresponding vertical actuation stroke 

(right-hand side), achieved by varying the biasing system stiffness kBi. 
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Figure 5. Steady values of G1y, G2y, G3y, (left-hand side) and corresponding vertical actuation stroke 

(right-hand side), achieved by varying the DE membrane external radius. 

4. Conclusions  

In this work, we have presented a physics-based model of an array of DEA elements. To deal 

with the high dimensionality of the system (i.e., 25 independent degrees a freedom ), the constitutive 

equations are obtained via an energetic approach, which allows for  a systematic and modular 

description of the many parts which make up the system. The developed model is useful to accurately 

understand how the system parameters (i.e., geometry, bias force) affect the mutual electro-

mechanical coupling among the many DEA taxels during actuation.  

The provided investigation showed that the softer the connection between DEA taxels and rigid 

frame, the higher the influences between the actuators. Thanks to this study, it will be possible to 

identify the optimal geometric combination of values that allows reaching the stroke and a desired 

configuration, without neglecting the electro-mechanical coupling effects that an actuator has on its 

neighbors. In addition, it is observed that softer biasing springs and wider DE/passive s ilicone ratios 

have an overall positive effect of the actuation stroke. The obtained results can then be used to guide 

the design and manufacturing of future DEA array systems. 

In future research, the developed model will be expanded with dynamic effects describing 

system inertia and DE viscoelasticity. In addition, more accurate nonlinear models will be adopted 

for describing both DE and silicone membranes, as well as more advanced types of biasing elements 

(i.e., bi-stable ones). Experimental validation of the full model will then be conducted. The validated 

model will then be used the design optimization, scaling, and control of cooperative DEA systems . 
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