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Abstract: Fault detection on automotive engine components is an important feature that motivates 

research from different engineering areas due to the interest of automakers in its potential to 

increase safety, reliability, and lifespan and to reduce pollutant emissions, fuel consumption, and 

maintenance costs. The fault detection can be applied to several types of maintenance strategies, 

ranging from finding the faults that generated a component failure to find them before the failure 

occurs. This work is focused on predictive maintenance, which aims to constantly monitor the target 

component to detect a fault at the beginning, thus facilitating the prevention of target component 

failures. It presents the results of different machine learning methods implemented as classification 

predictors for fault detection tasks, including Random Forest (RF), Support Vector Machines (SVM), 

Artificial Neural Networks (ANN) variants, and Gaussian Processes (GP). The data used for training 

was generated by a simulation testbed for fault diagnosis in turbocharged petrol engine systems, 

whereby its operation was modeled using industrial-standard driving cycles, such as the 

Worldwide Harmonized Light Vehicle Test Procedure (WLTP), New European Driving Cycle 

(NEDC), Extra-Urban Driving Cycle (EUDC), and the United States Environmental Protection 

Agency Federal Test Procedure (FTP-75). 
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1. Introduction 

Due to production costs, it is not possible to have sensors installed in all engine components, 

which makes it difficult to apply predictive maintenance for all of them [1]. One way to work around 

that problem is to use predictors based on machine learning paradigms  that can use signals from 

indirect sensors and predict a fault  [2]. To accomplish that, it is necessary to acquire data that contains 

both normal and faulty behaviors from the target component to train a machine learning method to 

recognize the defective behavior before embedding it into the software of an engine electronic control 

unit [3].  

Data acquisition can be an expensive process as well, as it may require several rounds of 

destructive testing for different driving cycles, which must be performed in real -time on 

instrumented vehicles in a dynamometer  [4]. Since machine learning methods are capable of 

handling a certain amount of noise, the data to train them can be generated by simulating the model 

of the respective engine in which the target component is installed. That process does not require 

real-time executions and vehicle instrumentation in a dynamometer lab, which decreases the cost of 

the data acquisition as a whole [5]. Simulated data-driven training of machine learning methods has 
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been used in different applications [6-9], showing that it is a valid approach to problems where it is 

possible to entirely or partially model the system where it is going to be applied. 

The purpose of this work is to show the feasibility of using different machine learning 

approaches as predictors of fault diagnosis, for predictive maintenance purposes, by using training 

and testing datasets of different standardized driving cycles, generated by a simulation testbed for 

fault diagnosis in turbocharged petrol engine systems. 

The remainder of this article is organized as follows. The experiments are detailed in Section 2. 

Section 3 presents the fundamentals of machine learning approaches. After, the results analysis and 

discussion are presented in Sections 4 and 5, respectively. The conclusion is mentioned in Section 6 .  

2. Experiments  

A platform for evaluation of fault diagnosis algorithms and strategies [10], implemented in 

Matlab/Simulink computational environment, was used to simulate and build all necessary data that 

was used to train the machine learning methods. That platform is a simulation testbed for fault 

diagnosis in turbocharged petrol engine systems, which allows the selection of fault modes for 

different components and driving cycles. For this work, the fault mode applied was a leakage in the 

compressor system for all four driving cycles available, i.e., Worldwide Harmonized Light Vehicle 

Test Procedure (WLTP), New European Driving Cycle (NEDC), Extra-Urban Driving Cycle (EUDC), 

and the United States Environmental Protection Agency Federal Test Procedure (FTP-75), all with a 

sampling time equal to 35 milliseconds.  

2.1. Dataset 

The dataset was divided into two subsets: training and testing sets. The train ing sets were 

comprised of three out of four driving cycles, i.e., NEDC, EUDC, and FTP-75, whereas the WLTP was 

used for testing purposes. The target used by the machine learning methods was a binary error flag, 

resulting from the normalization of the residual value provided by the simulation. There were 

fourteen signals available in the simulator that could be used to feed the machine learning methods, 

as inputs. Five among them were selected by a brute force algorithm, which compared the best 

accuracy for combinations of them against the accuracy when of them are used. The selected inputs 

were the following:  

1. Ambient pressure [Pa]; 

2. Compressor temperature [K]; 

3. Compressor pressure [Pa]; 

4. Intercooler temperature [K]; 

5. Intake manifold temperature [K]. 

The dataset comprised 146,606 samples, where 94,971 made up the training set, and 51,635 

composed the testing set. Inputs and targets were normalized between 0 and 1 and only for the 

training dataset, they have shuffled afterward. The testing dataset was kept unshuffled to keep the 

time-series signal for plotting purposes. 

2.2. Machine Learning Methods 

Five machine learning algorithms were chosen and implemented by using Matlab’s built -in 

functions for this work. 

2.2.1. Single Layer Feed-Forward Neural Network 

An artificial neural network is composed of the connection of two or more mathematical 

elements called artificial neurons. These neurons act as functions that receive multiple inputs and 

produce a single output. A weight is assigned for each input of the ar tificial neuron as well as a bias 

for each neuron itself. The weighted inputs and the bias are added together, resulting in a linear 
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output that is fed into a non-linear function, i.e., activation function, which is common to all neurons 

within the same layer [11]. A single layer feed-forward neural network (SLFN) is an artificial neural 

network with only one hidden layer, formed by parallel artificial neurons, which connect the input 

neurons to the output neurons [12]. The configuration adopted in this work used 100 neurons in the 

hidden layer with a hyperbolic tangent activation function, along with a linear neuron in the output. 

2.2.2. Random Vector Functional Link Networks 

Random Vector Functional Link Networks (RVFL) is a SLFN in which the weights and biases of 

the hidden neurons are randomly generated within a suitable range and kept  fixed while the output 

weights are computed via a simple closed-form solution [13, 14]. Randomization based neural 

networks benefit from the presence of direct links from the input layer to the output layer as in RVFL 

[15]. The original features are reused or propagated to the output layer via the direct links. The direct 

links act as a regularization for the randomization [16]. It also helps to keep the model complexity 

low with the RVFL being smaller and simpler compared to its other counterparts, which makes the 

RVFL attractive to use compared to other similar randomized neural networks  [17]. The setup 

adopted in this work had 95 neurons in the hidden layer with hyperbolic tangent activation function, 

5 enhanced neurons, and a linear neuron in the output. The total number of neurons was kept the 

same as in the SLFN structure (i.e., 100 neurons). 

2.2.3. Support Vector Machines 

Support vector machine (SVM) is a supervised learning algorithm that follows the principle of 

structural minimization of dimensional risk, based on the Vapnik-Chervonenkis theory [18]. Its goal 

is to classify a given set of data points, which are mapped to a multidimensional feature space using 

a kernel function, by representing a decision limit as a hyperplane in a higher dimension, in the 

feature space [19]. One of the crucial ingredients for SVM is the so-called kernel trick which allows 

the computation of scalar products in spaces of high dimension characteristics using simple 

functions, defined in pairs of input patterns. This trick allows the formulation of non -linear variants 

for any algorithm that can be expressed in terms of scalar product, the most promising of these is 

SVM [20]. The kernel function used in this work was the Gaussian kernel function [21]. 

2.2.4. Random Forest 

Random forest (RF) is an algorithm from the ensemble methods, which are methods that 

combine different models to obtain a single result. This feature makes these algorithms more robust 

and complex, leading to a higher computational cost that is usually accompanied by better results 

[22]. During the creation of a model, different configurations of this algorithm can be tested, thus 

generating different models, but at the end of the machine learning process, only the best result is 

used. In an ensemble method, different models are created from an algorithm, but all the results are 

used instead: a result is obtained for each model and combined into a single result. For instance, the 

result with the highest frequency is the chosen one in classification problems  [23]. A RF is made up 

of ensembled decision trees, which establish the rules for decision making [24]. The algorithm creates 

a graph structure, similar to a flowchart, with nodes where a condition is verified. Depending on the 

decision conditions attached to each node, the flow follows through one branch or the other, always 

leading to the next node, until the tree ends. With the training data, the algorithm searches for the 

configuration and node connections that minimize the error [25]. The number of ensembled 

classification trees adopted in this work was 100. 

2.2.5. Gaussian Processes 

A Gaussian process is a collection of random variables, indexed by time or space, fully specified 

by its mean and covariance functions, such that every finite collection of those random variables has 

a multivariate normal distribution [26]. Gaussian processes use lazy learning and a measure of the 

similarity between points (i.e., the kernel function) to predict the value for an unseen point from 
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training data. The prediction is not just an estimate for that point but also has uncertainty information. 

For multi-output predictions, multivariate Gaussian processes are used, for which the multivariate 

Gaussian distribution is the marginal distribution at each point  [27]. The kernel (i.e., covariance) 

function adopted in this work was the exponential kernel function [28]. 

2.3. Metrics and Statistics 

To compare the performance of the five selected machine learning methods, the same training 

and testing datasets were used to feed all of them. The outputs were classified as true positives (TP), 

false positives (FP), true negatives (TN), and false negatives (FN), thus the metric used to compare 

the performance was the binary accuracy:  

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 +𝐹𝑃 + 𝐹𝑁
, (1) 

which represents the rate of success of each assessed predictor [29]. All selected machine learning 

methods were trained and validated 90 times to generate enough data for statistical comparison [30], 

which was accomplished by evaluating 5 statistical values: minimum, median, mean, maximum, and 

standard deviation of the accuracy. A second test performed was the application of a low-pass filter, 

in the form of a moving average filter [31], ensuring maximum possible accuracy but allowing some 

time delay before indicating a failure. The same metric and statistics from the first test (i.e., no 

filtering) were applied to this second part, along with the evaluation of the time delay associated with 

the failure detection. 

3. Results 

After 90 runs, the statistics for the accuracy of all 5 machine learning met hods were evaluated, 

as shown by the results in Table 1. 

Table 1. Accuracy statistics for selected machine learning methods with no filtering (90 runs). 

Method Minimum Mean  Median Maximum 
Standard 

Deviation 

SLFN 0.67917 0.74440 0.74849 0.77105 0.01842 

RVFL 0.76067 0.77493 0.77503 0.78577 0.00535 

SVM 0.80612 0.80612 0.80612 0.80612 0.00000 ¹ 

RF 0.88539 ¹ 0.88749 ¹  0.88746 ¹ 0.88976 ¹ 0.00108 

GP 0.78371 0.79245 0.79293 0.80300 0.00433 

1 Best results considering accuracy maximization. 

 The statistics showed that the best results were achieved by the random Forest method, since its 

minimum accuracy, i.e., 0.88539, was greater than the second maximum accuracy, i.e., 0.806120, 

achieved by the support vector machines method. Nevertheless, it is possible to increase the accuracy 

of all methods by low-pass filtering the outputs. A brute force algorithm was used to sweep different 

moving average window sizes, starting with the size of 1 sample, incrementing it by unit steps, until 

it reached a maximum mean accuracy. Along with each moving average window size, there is an 

associated delay, which is one sampling time (i.e., 35 milliseconds) per window size unit. The results 

for each method, the moving average window sizes, and delays associated with them are presented 

in Table 2, together with the updated statistical values. 

Table 2. Accuracy statistics for selected machine learning methods with low-pass filtering (90 runs). 

Method 
Window 

Size 
Delay Minimum Mean Median Maximum 

Standard 

Deviation 

SLFN 3164 110.74 0.85982 0.95563 0.97318 0.99030 0.03742 

RVFL 2935 102.725 0.95630 0.97431 0.97478 0.98554 0.00732 
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SVM 2711 94.885 0.99041 0.99041 0.99041 0.99041 0.00000 1 

RF 827 1 28.945 1 0.98577 1 0.99084 1 0.99205 1 0.99238 0.00202 

GP 2166 75.81 0.98565 0.99084 1 0.99093 0.99262 1 0.00118 

1 Best results considering accuracy maximization. 

The results for low-pass filtering outputs of the machine learning methods applied differed from  

One important thing to notice is that all filtered methods reached the maximum accuracy during the 

test phase at least once, if the delay caused by the moving average window is considered. The residual 

error is due to the samples within the interval between the failure is applied and the failure 

recognition, which depends directly on the time delay. Figure 1 shows the filtered output of the best 

run (i.e., highest maximum accuracy equal to 0.99262) for the Gaussian processes method, but the 

waveform was the same for the outputs of all methods.    

 

Figure 1. This is a time series of both target and GP predictions. The target represents a fault applied 

to the simulated engine component (i.e., leakage in the compressor system) during a WLTP driving 

cycle . The prediction identifies the fault by using a low-pass filtered output from a trained Gaussian 

processes method, which is accomplished after a delay caused by the filtering process.  

4. Discussion 

The results suggest that machine learning methods, trained with simulation data, can be used in 

predictive maintenance to recognize failures in automotive engine components. To increase 

precision, the application of low-pass filtering is necessary, leading to delays in fault detection which 

must be considered for each component, application, and design requirements. The computational 

cost is also a limiting factor for real-life applications, which may lead to unfeasibility depending on 

the embedded technology used on such applications. In that sense, further tests in onboard, real 

vehicles are necessary to validate all the methods used in this work, due to its accuracy and 

computational cost feasibility. Nevertheless, once it is validated, it is possible to apply the methods 

for different components, not limited to engine components but all vehicle components that can 

benefit from predictive maintenance in the form of fault diagnosis. Furthermore, the application of 
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different approaches for fault recognition is considered for further research, such as multi-step 

forecasting based on mode decomposition [32-34] along with the artificial wavelet neural networks 

based on swarm intelligence paradigms [35].  

5. Conclusions  

Machine learning methods, such as random forest, support vector machines, single layer feed-

forward neural networks, random vector functional link networks, and Gaussian processes can be 

applied as fault predictors for predictive maintenance in automotive engine components by using 

generated data from simulation testbeds for fault diagnosis, whereby fault behaviors can be 

simulated and compared when performed in distinct driving cy cles. Maximum accuracy is reachable 

when a moving average (i.e., low-pass) filter is applied, but a response delay must be considered 

before fault recognition.  
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Abbreviations 

The following abbreviations are used in this manuscript: 

RF: Random Forest 

SVM: Support Vector Machines 

ANN: Artificial Neural Networks 

GP: Gaussian Processes 

WLTP: Worldwide Harmonized Light Vehicle  Test Procedure 

EUDC: Extra-Urban Driving Cycle  

NEDC: New European Driving Cycle  

FTP-75: United States Environmental Protection Agency Federal Test Procedure  

Pa: Pascal 

K: Kelvin 

SLFN: Single Layer Feed-Forward Neural Network 

RVFL: Random Vector Functional Link Networks 

TP: True Positive  

TN: True Negative  

FP: False Positive 

FP: False Negative 

s: Seconds 

References 

1. Frank, P. M. Fault detection in industrial processes. IFAC Proceedings Volumes, 1998, 31, 891-896, doi: 

10.1016/S1474-6670(17)40665-3. 

2. Bode, G.; Thul, S.; Baranski, M.; Müller, D. Real-world application of machine -learning-based fault 

detection trained with experimental data . Energy, 2020, 198, 117323, doi: 10.1016/j.energy.2020.117323. 

3. Abdelgayed, T. S.; Morsi, W. G.; Sidhu, T. S. Fault detection and classification based on co-

training of semisupervised machine learning. IEEE Transactions on Industrial Electronics, 2018, 65, 1595-

1605, doi: 10.1109/TIE.2017.2726961. 

4. Ruan, D.; Xie , H.; Song, K.; Zhang, G. Adaptive speed control based on disturbance compensation for 

engine-dynamometer system. IFAC-PapersOnLine, 2019, 52, 642-647, doi: 10.1016/j.ifacol.2019.09.102. 

5. Cavalcante, I. M.; Frazzon, E. M.; Forcellini, F. A.; Ivanov, D. A supervised machine learning approach 

to data-driven simulation of resilient supplier selection in digital manufacturing. International Journal 

of Information Management , 2019, 49, 86-97, doi: 10.1016/j.ijinfomgt.2019.03.004. 



1st International Electronic Conference on Actuator Technology: Materials, Devices and Applications (IeCAT 2020) 

7 
 

6. Chen, Z.; Mi, C. C.; Xu, J.; Gong, X.; You, C. Energy management for a power-split plug-in hybrid 

electric vehicle based on dynamic programming and neural networks . IEEE Transactions on Vehicular 

Technology, 2014, 63, 1567-1580, doi: 10.1109/TVT.2013.2287102. 

7. Huttunen, J. M. J.; Kärkkäinen, L.; Lindholm, H. Pulse transit time estimation of aortic pulse wave 

velocity and blood pressure using machine learning and simulated training data. PLoS Comput Biol, 

2019, 15, e1007259, doi: 10.1371/journal.pcbi.1007259. 

8. Janet, J. P.; Chan, L.; Kulik, H. J. Accelerating chemical discovery with machine learning: simulated 

evolution of spin crossover complexes with an artificial neural network. The Journal of Physical 

Chemistry Letters, 2018, 9, 1064-1071, doi: 10.1021/acs.jpclett.8b00170. 

9. Li, Q.; Rajagopalan, C.; Clifford, G. D. A machine learning approach to multi-level ECG signal quality 

classification. Computer Methods and Programs in Biomedicine , 2014, 117, 435-447, doi: 

10.1016/j.cmpb.2014.09.002. 

10. Ng, K. Y.; Frisk, E.; Krysander, M.; Eriksson, L. A realistic simulation testbed of a turbocharged spark-

ignited engine system: a platform for the evaluation of fault diagnosis algorithms and strategies. IEEE 

Control Systems Magazine, 2020, 40, 56-83, doi: 10.1109/MCS.2019.2961793. 

11. Nielsen, M, A. Neural Networks and Deep Learning , 1st ed.; Determination Press: Boston, United States 

of America, 2015; pp. 1-5.  

12. Goodfellow, I.; Bengio, Y.; Courville , A. Deep Learning , 1st ed.; MIT Press: Boston, United States of 

America, 2016; pp. 164-167. 

13. Pao, Y. H.; Takefuji, Y. Functional-link net computing: theory, system architecture, and functionalities. 

IEEE Computer, 1992, 25, 76-79, doi: 10.1109/2.144401. 

14. Pao, Y. H.; Park, G. H.; Sobajic, D. J. Learning and generalization characteristics of the random vector 

functional-link net. Neurocomputing, 1994, 6, 163-180, doi: 10.1016/0925-2312(94)90053-1. 

15. Vukovi, N.; Petrovi, M.; Miljkovi, Z. A comprehensive experimental evaluation of orthogonal 

polynomial expanded random vector functional link neural networks for regression. Applied Soft 

Computing, 2018, 70, 1083-1096, doi: 10.1016/j.asoc.2017.10.010. 

16. Zhang, L.; Suganthan, P. N. A comprehensive evaluation of random vector functional link networks. 

Information Sciences, 2016, 367-368, 1094-1105, doi: 10.1016/j.ins.2015.09.025. 

17. Ren, Y.; Suganthan, P. N; Srikanth, N.; Amaratunga, G. Random vector functional link network for 

short-term electricity load demand forecasting. Information Sciences, 2016, 367-368, 1078-1093, doi: 

10.1016/j.ins.2015.11.039. 

18. Vapnik, V. N. The Nature of Statistical Learning Theory, 2nd ed.; Springer: New York, United States of 

America, 2000; pp. 267-270. 

19. Smola, A. J.; Schölkopf, B. A tutorial on support vector regression. Statistics and Computing, 2004, 14, 

199-222, doi: 0.1023/B:STCO.0000035301.49549.88. 

20. Schölkopf, B.; Smola, A. J . Learning with Kernels, Support Vector Machines, Regularization, Optimization 

and Beyond, 1st ed.; MIT Press: Boston, United States of America, 2002; pp. 11-15. 

21. Keerthi, S. S.; Lin , C.-J. Asymptotic behaviors of support vector machines with gaussian kernel. Neural 

Computation, 2003, 15, 1667-1689, doi: 10.1162/089976603321891855. 

22. Breiman, L. Random forests. Machine Learning , 2001, 45, page 5-32, doi: 10.1023/A:1010933404324 

23. Shih, Y. S. Families of splitting criteria for classification trees. Statistics and Computing, 1999, 9, 309-315, 

doi: 10.1023/A:1008920224518. 

24. Meinshausen, N. Quantile  regression forests. Journal of Machine Learning Research, 2006, 7, 983-999, doi: 

10.5555/1248547.1248582. 

25. Breiman, L.; Friedman, J. H.; Olshen, R.A.; Stone, C; J. Classification and Regression Trees, 1st ed.; CRC 

Press: Boca Raton, United States of America, 1984; pp. 255-259. 

26. Rasmussen, C. E.; Williams, C. K. I.. Gaussian Processes for Machine Learning . MIT Press: Boston, United 

States of America, 2006; pp. 37-41. 

27. Bijl, H.; Wingerden, J.-W.; Verhaegen, M. Applying gaussian processes to reinforcement learning for 

fixed-structure controller synthesis . IFAC Proceedings Volumes, 2014, 47, 10391-10396, doi: 

10.3182/20140824-6-ZA-1003.01623. 

28. Neal, R. M. Bayesian learning for neural networks. Springer: New York, United States of America, 1996; 

pp. 118-119. 

29. Fawcett, T. 2006. An introduction to ROC analysis. Pattern Recognition Letters, 2006, 27, 861–874, doi: 

10.1016/j.patrec.2005.10.010. 



1st International Electronic Conference on Actuator Technology: Materials, Devices and Applications (IeCAT 2020) 

8 
 

30. Majid, U. Research fundamentals: study design, population, and sample size . Undergraduate Research 

in Natural and Clinical Science and Technology (URNCST) Journal, 2018, 2, 1-7, doi: 10.26685/urncst.16 

31. Lyandres, V.; Briskin, S. On an approach to moving-average filtering. Signal Processing , 1993, 34, 163-

178, doi: 10.1016/0165-1684(93)90160-C. 

32. Silva, R. G.; Ribeiro, M. H. D. M.; Moreno, S. R.; Mariani, V. C.; Coelho, L. S. A novel decomposition-

ensemble learning framework for multi-step ahead wind energy forecasting. Energy, 2020, 119174, doi: 

10.1016/j.energy.2020.119174 

33. Ribeiro, M. H. D. M.; Mariani, V. C.; Coelho, L. S. Multi-step ahead meningitis case forecasting based 

on decomposition and multi-objective optimization methods. Journal of Biomedical Informatics, 2020, 

111, 103575, doi: 10.1016/j.jbi.2020.103575. 

34. Moreno, S. R.; Silva, R. G.; Mariani, V. C.; Coelho, L. S. Multi-step wind speed forecasting based on 

hybrid multi-stage decomposition model and long short-term memory neural network, Energy 

Conversion and Management , 2020, 213, 112869, doi: 10.1016/j.enconman.2020.112869. 

35. Klein, C. E.; Bittencourt, M.; Coelho, L. S. Wavenet using artificial bee colony applied to modeling of 

truck engine powertrain components, Engineering Applications of Artificial Intelligence, 2015, 41, 41-55, 

doi:10.1016/j.engappai.2015.01.009. 

©  2020 by the authors; licensee MDPI, Basel, Switzerland. This article  is an open access 

article  distributed under the terms and conditions of the Creative Commons by Attribution 

(CC-BY) license (http://creativecommons.org/licenses/by/4.0/). 


