ETH zürich

Automated Insertion of Objects Into an Acoustic Robotic Gripper

M. Röthlisberger, M. Schuck, L. Kulmer, J.W. Kolar

Swiss Federal Institute of Technology (ETH) Zurich Power Electronic Systems Laboratory www.pes.ee.ethz.ch

Outline

- Motivation
- Operating Principle
- Picking Process
- **Experimental Results**
- ► Conclusion

Motivation Acoustic Levitation

Puskar L. «Raman acoustic levitation spectroscopy of red blood cells and Plasmodium falciparum trophozoites»

Standing Wave Levitation

- Single Transducer and Reflector
- No Manipulations

Marzo A. «Holographic acoustic elements for manipulation of levitated objects»

Array of Ultrasonic Transducers

- Array Instead of Single Transducers
- Rotation and Translation of Levitating Objects

► Acoustic Robotic Gripper

2020

- Long Range Movements
- Contactless Automation of Pick & Place Processes

1866 2015 *ETH* zürich

Power Electronic Systems Laboratory

Motivation

Acoustic Robotic Grippers

Handling of Components

- Without Mechanical Contact
- Damage and Contamination Free
- Handling of Small Objects and Liquid
- One Gripper for Multiple Object Geometries

Automation of Processes

 Automated Insertion of Components Required for the Automation of Pick & Place Processes

Beam-

former

Χ.

Operating Principle

Piezoelectric Transducers

► Acoustic Pressure

Damper

Mechanical

Structure

• $p = e^{i\varphi}V_{\text{RMS}}P_0J_0(kr\sin\theta)\frac{1}{d}e^{ikd}$

Piezoelectric

element

Butterworth-Van Dyke Equivalent Circuit

- ► P_0 : Pressure at d = 1 m for V_{RMS} = 1 V
 - $P_0 \propto \hat{x} \propto \hat{Q} \propto \hat{\iota} = \frac{V_{40}}{Z_{40}}$

Frequency-Dependent Impedance

5/14

ETH zürich

Operating Principle Acoustic Forces

► Focussing Of Acoustic Pressure

- Constructive Superposition of the Pressures of Single Transducers at the Focal Point
- Phase φ of Transducer j

•
$$\varphi_j = -\angle \left(\frac{P_0}{d_d} e^{i \frac{2\pi f d_d}{c_0}} + R \frac{P_0}{d_r} e^{i \frac{2\pi f d_r}{c_0}} \right), R = 0$$
 without Reflective Surfaces

► Acoustic Traps

- Adding a **Phase Signature** to the Phases for Focussing
- 180° Phase Shift for one Half of the Transducers for Twin Traps
 - Horizontal Seperation Plane Between the Halves \rightarrow HTT
 - Vertical Seperation Plane \rightarrow VTT

ETH zürich

Operating Principle Reflective Surfaces

► Reflection on Acoustically Reflective Surfaces

- Perpendicular Arriving Waves \rightarrow Destructive Superposition $z = \lambda/4$
- Non Perpendicular \rightarrow Destructive Superposition Deviates from $\lambda/4$

Distribution of Maximum Attainable Pressure (DMAP)

No Focussing of the Acoustic Pressure Possible in the Surroundings of the Minimum in the DMAP

No Vertical Twin Traps

ETH zürich

Double-Sided Gripper

► Arrangement

- 72 Piezoelectric Transducers
- Arranged on the Two Pole Caps of a Sphere
- Oriented Towards the Center

Control

- Square Wave Excitation Signals
- Individual Phase and Duty Cycle for Each Transducer

Picking Process Double-Sided Picking

Picking Objects from Acoustically Transparent Surfaces

Transmission Coefficient T > 50 %

► Trap Object in VTT

ETH zürich

Move Object Vertically

► Move Gripper Horizontally

Power Electronic Systems Laboratory

Picking Process Single-Sided Gripper

► Arrangement

- 96 Piezoelectric Tranducers
- Cylindrical Shape
 - 3 Rings of 20 Transducers on the Side Walls
 - 3 Rings of 6, 12, and 18 Transducers on the Horizontal Top

Control

- Square Wave Excitation Signals
- Individual Phase and Duty Cycle for Each Transducer

Picking Process Single-Sided Picking

Picking Objects from Acoustically Reflective Surfaces

Transmission Coefficient T < 50 %</p>

► Standing Wave

• Lifts the Object off the Surface to $z = \lambda/4$

Switch to Vertical Twin Trap at $z = \lambda/2$

- Focusing of Pressure Possible for $z \ge \lambda/2$
- Pulls the Object from $z = \lambda/4$ Into the Acoustic Trap
- Move VTT Vertically Until Reflections are Negligible

Experimental Results

Automated Insertion of Objects

Demonstrated Picking of

	Diameter	Density	Weight	Reflective Surface	Transparent Surface
Styrofoam Sphere	d = 4 mm	0.04 g/cm^{3}	1.3 mg	\checkmark	\checkmark
Pyrobubble Sphere (SiO ₂)	d = 4 mm	0.25 g/cm ³	8.4 mg	\checkmark	\checkmark
Steel Sphere	d = 3 mm	7.8 g/cm ³	110 mg	×	\checkmark
Steel Washer	d = 5 mm	7.8 g/cm ³	37.1 mg	×	\checkmark

Limitations Reflective Surfaces

- High Vertical Forces Using Standing Waves
- VTTs Provide Limited Vertical Forces

 $\rightarrow d < 4 \text{ mm}, \rho < 0.25 \text{ g/cm}^3$

Conclusion

Demonstrated Control Concepts for the Automation of Gripping Objects Acoustically

- For Objects with a Density of up to 7.8 g/cm³
- Located on Acoustically Transparent or Reflective Surfaces
- For Minimized Stress During the Lift Off Process

Further Improvements of the Single-Sided Picking Process

- Using Transducer which Produce High Pressure for a Wider Range of Frequencies
- Pick Objects with a Higher Density from Reflective Surfaces
- Opens Up Even More Fields of Application

Thank You !

14/14

ETH zürich _____